論文の概要: Bridging the gap between Natural and Medical Images through Deep
Colorization
- arxiv url: http://arxiv.org/abs/2005.10589v2
- Date: Mon, 19 Oct 2020 21:47:58 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-30 23:56:22.713336
- Title: Bridging the gap between Natural and Medical Images through Deep
Colorization
- Title(参考訳): 深色化による自然画像と医学画像のギャップの橋渡し
- Authors: Lia Morra, Luca Piano, Fabrizio Lamberti, Tatiana Tommasi
- Abstract要約: 自然画像収集からの伝達学習は、形状、テクスチャ、色の違いに対処しようとする標準的な実践である。
本研究では,これらの課題を解消し,色適応に着目した専用ネットワークモジュールの設計を提案する。
カラーモジュールのスクラッチからの学習と異なる分類バックボーンの伝達学習を組み合わせることで、画像認識のためのエンドツーエンドで簡単にトレーニングできるアーキテクチャを得る。
- 参考スコア(独自算出の注目度): 15.585095421320922
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning has thrived by training on large-scale datasets. However, in
many applications, as for medical image diagnosis, getting massive amount of
data is still prohibitive due to privacy, lack of acquisition homogeneity and
annotation cost. In this scenario, transfer learning from natural image
collections is a standard practice that attempts to tackle shape, texture and
color discrepancies all at once through pretrained model fine-tuning. In this
work, we propose to disentangle those challenges and design a dedicated network
module that focuses on color adaptation. We combine learning from scratch of
the color module with transfer learning of different classification backbones,
obtaining an end-to-end, easy-to-train architecture for diagnostic image
recognition on X-ray images. Extensive experiments showed how our approach is
particularly efficient in case of data scarcity and provides a new path for
further transferring the learned color information across multiple medical
datasets.
- Abstract(参考訳): ディープラーニングは、大規模なデータセットのトレーニングによって成長した。
しかし、医療画像診断などの多くのアプリケーションでは、プライバシ、取得均質性の欠如、アノテーションコストなどの理由から、大量のデータ取得が禁止されている。
このシナリオでは、自然画像収集からの伝達学習は、事前訓練されたモデル微調整を通して、形状、テクスチャ、色差に一度に対処しようとする標準的なプラクティスである。
本研究では,これらの課題を解消し,色適応に着目した専用ネットワークモジュールの設計を提案する。
カラーモジュールのスクラッチからの学習と異なる分類バックボーンの伝達学習を組み合わせることで,X線画像上の画像認識のためのエンドツーエンドの簡易訓練アーキテクチャを得る。
大規模な実験は、データ不足の場合、我々のアプローチが特に効率的であることを示し、学習した色情報を複数の医療データセット間で転送するための新たな経路を提供する。
関連論文リスト
- Learned representation-guided diffusion models for large-image generation [58.192263311786824]
自己教師型学習(SSL)からの埋め込みを条件とした拡散モデルを訓練する新しいアプローチを導入する。
我々の拡散モデルは、これらの特徴を高品質な病理組織学およびリモートセンシング画像に投影することに成功した。
実画像のバリエーションを生成して実データを増やすことにより、パッチレベルおよび大規模画像分類タスクの下流精度が向上する。
論文 参考訳(メタデータ) (2023-12-12T14:45:45Z) - Connecting the Dots: Graph Neural Network Powered Ensemble and
Classification of Medical Images [0.0]
医療画像の深層学習は、大量のトレーニングデータを必要とするため、制限されている。
画像フォレスティング変換を用いて、画像を最適にスーパーピクセルに分割する。
これらのスーパーピクセルはその後、グラフ構造化データに変換され、特徴の巧妙な抽出と関係のモデリングを可能にする。
論文 参考訳(メタデータ) (2023-11-13T13:20:54Z) - Disruptive Autoencoders: Leveraging Low-level features for 3D Medical
Image Pre-training [51.16994853817024]
本研究は、3Dラジオグラフィ画像のための効果的な事前学習フレームワークの設計に焦点をあてる。
ローカルマスキングと低レベルの摂動の組み合わせによって生成された破壊から、オリジナルのイメージを再構築しようとする事前トレーニングフレームワークであるDisruptive Autoencodersを紹介する。
提案する事前トレーニングフレームワークは、複数のダウンストリームタスクでテストされ、最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2023-07-31T17:59:42Z) - Domain Generalization for Mammographic Image Analysis with Contrastive
Learning [62.25104935889111]
効果的なディープラーニングモデルのトレーニングには、さまざまなスタイルと品質を備えた大規模なデータが必要である。
より優れたスタイルの一般化能力を備えた深層学習モデルを実現するために,新しいコントラスト学習法が開発された。
提案手法は,様々なベンダスタイルドメインのマンモグラムや,いくつかのパブリックデータセットを用いて,広範囲かつ厳密に評価されている。
論文 参考訳(メタデータ) (2023-04-20T11:40:21Z) - Understanding the Tricks of Deep Learning in Medical Image Segmentation:
Challenges and Future Directions [66.40971096248946]
本稿では,モデル実装の異なるフェーズに対して,MedISegの一連のトリックを収集する。
本稿では,これらの手法の有効性を一貫したベースライン上で実験的に検討する。
私たちはまた、それぞれのコンポーネントがプラグインとプレイの利点を持つ強力なMedISegリポジトリをオープンソースにしました。
論文 参考訳(メタデータ) (2022-09-21T12:30:05Z) - Metadata-enhanced contrastive learning from retinal optical coherence tomography images [7.932410831191909]
従来のコントラストフレームワークを新しいメタデータ強化戦略で拡張する。
本手法では,画像間のコントラスト関係の真のセットを近似するために,患者メタデータを広く活用する。
提案手法は、6つの画像レベル下流タスクのうち5つにおいて、標準コントラスト法と網膜画像基盤モデルの両方に優れる。
論文 参考訳(メタデータ) (2022-08-04T08:53:15Z) - Positional Contrastive Learning for Volumetric Medical Image
Segmentation [13.086140606803408]
コントラストデータペアを生成するための新しい位置コントラスト学習フレームワークを提案する。
提案手法は,半教師付き設定と移動学習の両方において既存の手法と比較して,セグメンテーション性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2021-06-16T22:15:28Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
注釈付き医用画像の不足は、医用画像コンピューティングの分野における最大の課題の1つだ。
本稿では,生成逆U-Netという新しい生成手法を提案する。
当社の新しいモデルは、ドメインフリーで、さまざまな医療画像に汎用性があります。
論文 参考訳(メタデータ) (2021-01-12T23:02:26Z) - Federated Learning for Computational Pathology on Gigapixel Whole Slide
Images [4.035591045544291]
計算病理学において,ギガピクセル全体の画像に対するプライバシ保護フェデレーション学習を導入する。
スライドレベルのラベルのみを用いた数千のスライディング画像を用いた2つの異なる診断問題に対するアプローチについて検討した。
論文 参考訳(メタデータ) (2020-09-21T21:56:08Z) - Stain Style Transfer of Histopathology Images Via Structure-Preserved
Generative Learning [31.254432319814864]
本研究では,SSIM-GANとDSCSI-GANの2つのステンスタイル転送モデルを提案する。
学習における構造保存指標と補助診断ネットのフィードバックを協調することにより、医療関連情報をカラー正規化画像に保存する。
論文 参考訳(メタデータ) (2020-07-24T15:30:19Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
胸部X線画像から胸部疾患を自動分類するためのCAN(Cross-Attention Networks)を提案する。
また,クロスエントロピー損失を超える新たな損失関数を設計し,クラス間の不均衡を克服する。
論文 参考訳(メタデータ) (2020-07-21T14:37:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。