A Novel Approach to the Diagnosis of Heart Disease using Machine
Learning and Deep Neural Networks
- URL: http://arxiv.org/abs/2007.12998v1
- Date: Sat, 25 Jul 2020 19:08:04 GMT
- Title: A Novel Approach to the Diagnosis of Heart Disease using Machine
Learning and Deep Neural Networks
- Authors: Sahithi Ankireddy
- Abstract summary: The objective of this project was to develop an application for assisted heart disease diagnosis using Machine Learning (ML) and Deep Neural Network (DNN) algorithms.
The application, running on Flask, and utilizing Bootstrap was developed using the DNN, as it performed higher than the Random Forest ML model with a total accuracy rate of 92%.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Heart disease is the leading cause of death worldwide. Currently, 33% of
cases are misdiagnosed, and approximately half of myocardial infarctions occur
in people who are not predicted to be at risk. The use of Artificial
Intelligence could reduce the chance of error, leading to possible earlier
diagnoses, which could be the difference between life and death for some. The
objective of this project was to develop an application for assisted heart
disease diagnosis using Machine Learning (ML) and Deep Neural Network (DNN)
algorithms. The dataset was provided from the Cleveland Clinic Foundation, and
the models were built based on various optimization and hyper parametrization
techniques including a Grid Search algorithm. The application, running on
Flask, and utilizing Bootstrap was developed using the DNN, as it performed
higher than the Random Forest ML model with a total accuracy rate of 92%.
Related papers
- Brain Tumor Classification on MRI in Light of Molecular Markers [61.77272414423481]
Co-deletion of the 1p/19q gene is associated with clinical outcomes in low-grade gliomas.
This study aims to utilize a specially MRI-based convolutional neural network for brain cancer detection.
arXiv Detail & Related papers (2024-09-29T07:04:26Z) - Research on Early Warning Model of Cardiovascular Disease Based on Computer Deep Learning [5.761426161930679]
This project intends to study a cardiovascular disease risk early warning model based on one-dimensional convolutional neural networks.
The missing values of 13 physiological and symptom indicators such as patient age, blood glucose, cholesterol, and chest pain were filled and Z-score was standardized.
arXiv Detail & Related papers (2024-06-13T07:04:22Z) - DDxT: Deep Generative Transformer Models for Differential Diagnosis [51.25660111437394]
We show that a generative approach trained with simpler supervised and self-supervised learning signals can achieve superior results on the current benchmark.
The proposed Transformer-based generative network, named DDxT, autoregressively produces a set of possible pathologies, i.e., DDx, and predicts the actual pathology using a neural network.
arXiv Detail & Related papers (2023-12-02T22:57:25Z) - AI Framework for Early Diagnosis of Coronary Artery Disease: An
Integration of Borderline SMOTE, Autoencoders and Convolutional Neural
Networks Approach [0.44998333629984877]
We develop a methodology for balancing and augmenting data for more accurate prediction when the data is imbalanced and the sample size is small.
The experimental results revealed that the average accuracy of our proposed method for CAD prediction was 95.36, and was higher than random forest (RF), decision tree (DT), support vector machine (SVM), logistic regression (LR), and artificial neural network (ANN)
arXiv Detail & Related papers (2023-08-29T14:33:38Z) - Deep Reinforcement Learning Framework for Thoracic Diseases
Classification via Prior Knowledge Guidance [49.87607548975686]
The scarcity of labeled data for related diseases poses a huge challenge to an accurate diagnosis.
We propose a novel deep reinforcement learning framework, which introduces prior knowledge to direct the learning of diagnostic agents.
Our approach's performance was demonstrated using the well-known NIHX-ray 14 and CheXpert datasets.
arXiv Detail & Related papers (2023-06-02T01:46:31Z) - Heart Disease Detection using Quantum Computing and Partitioned Random Forest Methods [0.8192907805418583]
Early detection of heart disease reduces the incidence of heart mortality and morbidity.
Recent research has utilized quantum computing methods to predict heart disease with more than 5 qubits.
Two open-source datasets, Cleveland and Statlog, are used in this study to apply quantum networks.
arXiv Detail & Related papers (2022-08-17T08:54:49Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - Novel Deep Learning Architecture for Heart Disease Prediction using
Convolutional Neural Network [0.0]
Heart disease is one of the deadliest diseases which is hampering the lives of many people around the world.
This paper proposes a novel deep learning architecture using a 1D convolutional neural network for classification between healthy and non-healthy persons.
The proposed network achieves over 97% training accuracy and 96% test accuracy on the dataset.
arXiv Detail & Related papers (2021-05-22T22:00:57Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
deep learning has become the most powerful computer-aided diagnosis technology for improving disease identification performance.
For chest X-ray imaging, annotating large-scale data requires professional domain knowledge and is time-consuming.
In this paper, we propose many-to-one distribution learning (MODL) and K-nearest neighbor smoothing (KNNS) methods to improve a single model's disease identification performance.
arXiv Detail & Related papers (2021-02-26T02:29:30Z) - An IoT Framework for Heart Disease Prediction based on MDCNN Classifier [0.0]
IoT framework is proposed to evaluate heart disease more accurately using a Deep Modified Convolutional Neural Network (MDCNN)
The smartwatch and heart monitor device that is attached to the patient monitors the blood pressure and electrocardiogram (ECG)
Results demonstrate that the proposed MDCNN based heart disease prediction system performs better than other methods.
arXiv Detail & Related papers (2020-12-10T22:00:56Z) - Identification of Ischemic Heart Disease by using machine learning
technique based on parameters measuring Heart Rate Variability [50.591267188664666]
In this study, 18 non-invasive features (age, gender, left ventricular ejection fraction and 15 obtained from HRV) of 243 subjects were used to train and validate a series of several ANN.
The best result was obtained using 7 input parameters and 7 hidden nodes with an accuracy of 98.9% and 82% for the training and validation dataset.
arXiv Detail & Related papers (2020-10-29T19:14:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.