Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D
Reconstruction with Symmetry
- URL: http://arxiv.org/abs/2007.13393v1
- Date: Mon, 27 Jul 2020 09:17:00 GMT
- Title: Ladybird: Quasi-Monte Carlo Sampling for Deep Implicit Field Based 3D
Reconstruction with Symmetry
- Authors: Yifan Xu, Tianqi Fan, Yi Yuan, Gurprit Singh
- Abstract summary: We propose a sampling scheme that theoretically encourages generalization and results in fast convergence for SGD-based optimization algorithms.
Based on the reflective symmetry of an object, we propose a feature fusion method that alleviates issues due to self-occlusions.
Our proposed system Ladybird is able to create high quality 3D object reconstructions from a single input image.
- Score: 12.511526058118143
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep implicit field regression methods are effective for 3D reconstruction
from single-view images. However, the impact of different sampling patterns on
the reconstruction quality is not well-understood. In this work, we first study
the effect of point set discrepancy on the network training. Based on Farthest
Point Sampling algorithm, we propose a sampling scheme that theoretically
encourages better generalization performance, and results in fast convergence
for SGD-based optimization algorithms. Secondly, based on the reflective
symmetry of an object, we propose a feature fusion method that alleviates
issues due to self-occlusions which makes it difficult to utilize local image
features. Our proposed system Ladybird is able to create high quality 3D object
reconstructions from a single input image. We evaluate Ladybird on a large
scale 3D dataset (ShapeNet) demonstrating highly competitive results in terms
of Chamfer distance, Earth Mover's distance and Intersection Over Union (IoU).
Related papers
- PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3plat sets a new state-of-the-art across all benchmarks, supported by comprehensive ablation studies validating our design choices.
Our framework capitalizes on fast speed, scalability, and high-quality 3D reconstruction and view synthesis capabilities of 3DGS.
arXiv Detail & Related papers (2024-10-29T15:28:15Z) - RNb-NeuS: Reflectance and Normal-based Multi-View 3D Reconstruction [3.1820300989695833]
This paper introduces a versatile paradigm for integrating multi-view reflectance and normal maps acquired through photometric stereo.
Our approach employs a pixel-wise joint re- parameterization of reflectance and normal, considering them as a vector of radiances rendered under simulated, varying illumination.
It significantly improves the detailed 3D reconstruction of areas with high curvature or low visibility.
arXiv Detail & Related papers (2023-12-02T19:49:27Z) - GS-SLAM: Dense Visual SLAM with 3D Gaussian Splatting [51.96353586773191]
We introduce textbfGS-SLAM that first utilizes 3D Gaussian representation in the Simultaneous Localization and Mapping system.
Our method utilizes a real-time differentiable splatting rendering pipeline that offers significant speedup to map optimization and RGB-D rendering.
Our method achieves competitive performance compared with existing state-of-the-art real-time methods on the Replica, TUM-RGBD datasets.
arXiv Detail & Related papers (2023-11-20T12:08:23Z) - $PC^2$: Projection-Conditioned Point Cloud Diffusion for Single-Image 3D
Reconstruction [97.06927852165464]
Reconstructing the 3D shape of an object from a single RGB image is a long-standing and highly challenging problem in computer vision.
We propose a novel method for single-image 3D reconstruction which generates a sparse point cloud via a conditional denoising diffusion process.
arXiv Detail & Related papers (2023-02-21T13:37:07Z) - Leveraging Monocular Disparity Estimation for Single-View Reconstruction [8.583436410810203]
We leverage advances in monocular depth estimation to obtain disparity maps.
We transform 2D normalized disparity maps into 3D point clouds by solving an optimization on the relevant camera parameters.
arXiv Detail & Related papers (2022-07-01T03:05:40Z) - Multi-initialization Optimization Network for Accurate 3D Human Pose and
Shape Estimation [75.44912541912252]
We propose a three-stage framework named Multi-Initialization Optimization Network (MION)
In the first stage, we strategically select different coarse 3D reconstruction candidates which are compatible with the 2D keypoints of input sample.
In the second stage, we design a mesh refinement transformer (MRT) to respectively refine each coarse reconstruction result via a self-attention mechanism.
Finally, a Consistency Estimation Network (CEN) is proposed to find the best result from mutiple candidates by evaluating if the visual evidence in RGB image matches a given 3D reconstruction.
arXiv Detail & Related papers (2021-12-24T02:43:58Z) - Learnable Triangulation for Deep Learning-based 3D Reconstruction of
Objects of Arbitrary Topology from Single RGB Images [12.693545159861857]
We propose a novel deep reinforcement learning-based approach for 3D object reconstruction from monocular images.
The proposed method outperforms the state-of-the-art in terms of visual quality, reconstruction accuracy, and computational time.
arXiv Detail & Related papers (2021-09-24T09:44:22Z) - Robust Extrinsic Symmetry Estimation in 3D Point Clouds [4.416484585765027]
Detecting the reflection symmetry plane of an object represented by a 3D point cloud is a fundamental problem in 3D computer vision and geometry processing.
We propose a statistical estimator-based approach for the plane of reflection symmetry that is robust to outliers and missing parts.
arXiv Detail & Related papers (2021-09-21T03:09:51Z) - 3D Human Pose and Shape Regression with Pyramidal Mesh Alignment
Feedback Loop [128.07841893637337]
Regression-based methods have recently shown promising results in reconstructing human meshes from monocular images.
Minor deviation in parameters may lead to noticeable misalignment between the estimated meshes and image evidences.
We propose a Pyramidal Mesh Alignment Feedback (PyMAF) loop to leverage a feature pyramid and rectify the predicted parameters.
arXiv Detail & Related papers (2021-03-30T17:07:49Z) - Reinforced Axial Refinement Network for Monocular 3D Object Detection [160.34246529816085]
Monocular 3D object detection aims to extract the 3D position and properties of objects from a 2D input image.
Conventional approaches sample 3D bounding boxes from the space and infer the relationship between the target object and each of them, however, the probability of effective samples is relatively small in the 3D space.
We propose to start with an initial prediction and refine it gradually towards the ground truth, with only one 3d parameter changed in each step.
This requires designing a policy which gets a reward after several steps, and thus we adopt reinforcement learning to optimize it.
arXiv Detail & Related papers (2020-08-31T17:10:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.