論文の概要: Evidence of Task-Independent Person-Specific Signatures in EEG using
Subspace Techniques
- arxiv url: http://arxiv.org/abs/2007.13517v4
- Date: Thu, 25 Mar 2021 20:12:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 11:38:28.703726
- Title: Evidence of Task-Independent Person-Specific Signatures in EEG using
Subspace Techniques
- Title(参考訳): サブスペース技術を用いた脳波におけるタスク非依存人物信号のエビデンス
- Authors: Mari Ganesh Kumar, Shrikanth Narayanan, Mriganka Sur, and Hema A
Murthy
- Abstract要約: この研究は、関連する分散を正規化することによって、タスク/条件に依存しないバイオメトリックシグネチャをモデル化しようとする。
提案手法は,脳波信号全体に生体情報が存在すると仮定し,高次元空間において時間にわたって統計を蓄積する。
最高のサブスペースシステムでは、被験者が30名、被験者が920名であるデータセットで、それぞれ86.4%と35.9%の精度を持つ個人を9つのEEGチャンネルで識別する。
- 参考スコア(独自算出の注目度): 40.58895146286888
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Electroencephalography (EEG) signals are promising as alternatives to other
biometrics owing to their protection against spoofing. Previous studies have
focused on capturing individual variability by analyzing
task/condition-specific EEG. This work attempts to model biometric signatures
independent of task/condition by normalizing the associated variance. Toward
this goal, the paper extends ideas from subspace-based text-independent speaker
recognition and proposes novel modifications for modeling multi-channel EEG
data. The proposed techniques assume that biometric information is present in
the entire EEG signal and accumulate statistics across time in a high
dimensional space. These high dimensional statistics are then projected to a
lower dimensional space where the biometric information is preserved. The lower
dimensional embeddings obtained using the proposed approach are shown to be
task-independent. The best subspace system identifies individuals with
accuracies of 86.4% and 35.9% on datasets with 30 and 920 subjects,
respectively, using just nine EEG channels. The paper also provides insights
into the subspace model's scalability to unseen tasks and individuals during
training and the number of channels needed for subspace modeling.
- Abstract(参考訳): 電気脳波(EEG)信号は、スプーフィングに対する保護のため、他の生体認証に代わるものとして期待されている。
これまでの研究では、タスク/条件特異的脳波の分析による個人変動の把握に重点を置いてきた。
この研究は、関連する分散を正規化することにより、タスク/条件に依存しないバイオメトリックシグネチャのモデル化を試みる。
この目的に向けて,サブスペースに基づくテキスト非依存話者認識からアイデアを拡張し,マルチチャネル脳波データのモデリングのための新しい修正を提案する。
提案手法は,脳波信号全体に生体情報が存在すると仮定し,高次元空間において時間にわたって統計を蓄積する。
これらの高次元統計は、生体情報が保存される低次元空間に投影される。
提案手法により得られた低次元埋め込みはタスク非依存であることが示されている。
最善のサブスペースシステムは、それぞれ30名と920名からなるデータセットにおいて、86.4%と35.9%の精度を持つ個人を、わずか9つのeegチャネルで識別する。
この論文は、訓練中のタスクや個人を認識できないようなサブスペースモデルのスケーラビリティや、サブスペースモデリングに必要なチャネル数に関する洞察も提供する。
関連論文リスト
- Geodesic Optimization for Predictive Shift Adaptation on EEG data [53.58711912565724]
ドメイン適応メソッドは、$X$と$y$で分散シフトが同時に発生したときに苦労する。
本稿では,GOPSA(Geodesic Optimization for Predictive Shift Adaptation)と呼ばれる新しい手法を提案する。
GOPSAは、脳波のバイオメディカル応用のための混合効果モデリングと機械学習を併用する可能性を持っている。
論文 参考訳(メタデータ) (2024-07-04T12:15:42Z) - Subject-Adaptive Transfer Learning Using Resting State EEG Signals for Cross-Subject EEG Motor Imagery Classification [10.487161620381785]
本稿では、RS EEG信号を用いて、未知の対象データにモデルを適用する新しい主題適応型トランスファー学習戦略を提案する。
提案手法は,3つの公開ベンチマーク上での最先端の精度を実現し,クロスオブジェクトEEG MI分類における本手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-05-17T20:36:04Z) - Assessing Robustness of EEG Representations under Data-shifts via Latent
Space and Uncertainty Analysis [0.29998889086656577]
我々は,外部データへのアクセスを前提とせずに,デプロイメント中に潜在的な落とし穴を検出する診断方法を開発した。
具体的には、データ変換による電気生理学的信号(EEG)の現実的なデータシフトをモデル化することに焦点を当てる。
我々は、複数の脳波特徴エンコーダと2つの臨床的に関連のある下流タスクについて、一般公開された大規模臨床脳波を用いて実験を行った。
論文 参考訳(メタデータ) (2022-09-22T19:26:09Z) - Intrinsic dimension estimation for discrete metrics [65.5438227932088]
本稿では,離散空間に埋め込まれたデータセットの内在次元(ID)を推定するアルゴリズムを提案する。
我々は,その精度をベンチマークデータセットで示すとともに,種鑑定のためのメダゲノミクスデータセットの分析に応用する。
このことは、列の空間の高次元性にもかかわらず、蒸発圧が低次元多様体に作用することを示唆している。
論文 参考訳(メタデータ) (2022-07-20T06:38:36Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Subject-Independent Drowsiness Recognition from Single-Channel EEG with
an Interpretable CNN-LSTM model [0.8250892979520543]
単一チャネル脳波信号からの主観的非依存的眠気認識のための新しい畳み込みニューラルネットワーク(CNN)-Long Short-Term Memory(LSTM)モデルを提案する。
その結果, 公立データセット上での被写体独立性認識において, 11人の被写体の平均精度は72.97%であった。
論文 参考訳(メタデータ) (2021-11-21T10:37:35Z) - Subject Independent Emotion Recognition using EEG Signals Employing
Attention Driven Neural Networks [2.76240219662896]
主観非依存の感情認識が可能な新しいディープラーニングフレームワークを提案する。
タスクを実行するために、アテンションフレームワークを備えた畳み込みニューラルネットワーク(CNN)を提示する。
提案手法は、公開データセットを使用して検証されている。
論文 参考訳(メタデータ) (2021-06-07T09:41:15Z) - SFE-Net: EEG-based Emotion Recognition with Symmetrical Spatial Feature
Extraction [1.8047694351309205]
脳波の特徴抽出と感情認識のための空間的折り畳みアンサンブルネットワーク(SFENet)を提案する。
ヒト脳の空間対称性のメカニズムによって、入力された脳波チャンネルデータを5つの異なる対称戦略で折り畳む。
このネットワークにより、異なる対称折り畳み記号の空間的特徴を同時に抽出することができ、特徴認識の堅牢性と精度を大幅に向上させる。
論文 参考訳(メタデータ) (2021-04-09T12:59:38Z) - Discriminative Singular Spectrum Classifier with Applications on
Bioacoustic Signal Recognition [67.4171845020675]
分析や分類に有用な特徴を効率的に抽出する識別機構を備えた生体音響信号分類器を提案する。
タスク指向の現在のバイオ音響認識法とは異なり、提案モデルは入力信号をベクトル部分空間に変換することに依存する。
提案法の有効性は,アヌラン,ミツバチ,蚊の3種の生物音響データを用いて検証した。
論文 参考訳(メタデータ) (2021-03-18T11:01:21Z) - Statistical control for spatio-temporal MEG/EEG source imaging with
desparsified multi-task Lasso [102.84915019938413]
脳磁図(MEG)や脳電図(EEG)のような非侵襲的手法は、非侵襲的手法を約束する。
ソースローカライゼーション(ソースイメージング)の問題は、しかしながら、高次元の統計的推測問題を引き起こす。
この問題に対処するために,分離されたマルチタスクラッソ(ecd-MTLasso)のアンサンブルを提案する。
論文 参考訳(メタデータ) (2020-09-29T21:17:16Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。