Understanding Quantum Theory
- URL: http://arxiv.org/abs/2007.13654v1
- Date: Mon, 27 Jul 2020 16:06:48 GMT
- Title: Understanding Quantum Theory
- Authors: Michael Drieschner
- Abstract summary: This paper attempts to clarify some issues that are discussed in the interpretations of quantum theory.
One of the main points of this paper is the role of predictions in understanding any theory of physics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There exist dozens of interpretations of quantum theory, but they do not seem
to contribute much to understanding the theory. This paper attempts to clarify
some issues that are discussed in those interpretations. The main keywords are:
"Classical ontology", Indeterminism, Probability, Predictions, The necessity of
classical concepts, Minimal interpretation, Lattice, Physical objects,
Alternatives to quantum theory?, Measurement, Realism. One of the main points
of this paper is the role of predictions in understanding any theory of
physics.
Related papers
- Stochastic Processes: From Classical to Quantum [7.034466417392574]
We start with some reminders from the theory of classical processes.
We then provide a brief overview of quantum mechanics and quantum field theory.
We introduce quantum processes on a boson Fock space and their calculus.
arXiv Detail & Related papers (2024-07-04T15:26:35Z) - A new interpretation of quantum theory, based on a bundle-theoretic view
of objective idealism [0.0]
The 'weirdness' of quantum theory can be understood to derive from a vanishing distinguishability of indiscernible particles.
The claim is made that quantum theory can be interpreted in an intelligible way by positing a bundle-theoretic view of objective idealism instead of materialism.
arXiv Detail & Related papers (2022-08-22T12:15:04Z) - Defining Quantum Games [1.9922905420195367]
We define quantum games as any type of rule-based games that use the principles or reference the theory of quantum physics or quantum phenomena.
We also discuss the concept of quantum computer games, games on quantum computers and discuss the definitions for the concept of science games.
arXiv Detail & Related papers (2022-05-31T19:59:00Z) - Towards Noncommutative Quantum Reality [0.0]
The implications of the physical theory of quantum mechanics on the question of realism is much a subject of sustaining interest.
We give here a picture of quantum mechanics as the basic theory for nonrelativistic' particle dynamics.
The key is to fully embrace the noncommutativity of the theory and see it as a notion about the reality of physical quantities.
arXiv Detail & Related papers (2022-02-19T10:27:23Z) - The relational ontology of contemporary physics [0.0]
Quantum theory can be understood as pointing to an ontology of relations.
I observe that this reading of quantum mechanics is supported by the ubiquity of relationality in contemporary fundamental physics.
arXiv Detail & Related papers (2022-01-03T23:30:08Z) - Testing real quantum theory in an optical quantum network [1.6720048283946962]
We show that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios.
We disproving real quantum theory as a universal physical theory.
arXiv Detail & Related papers (2021-11-30T05:09:36Z) - Quantum realism: axiomatization and quantification [77.34726150561087]
We build an axiomatization for quantum realism -- a notion of realism compatible with quantum theory.
We explicitly construct some classes of entropic quantifiers that are shown to satisfy almost all of the proposed axioms.
arXiv Detail & Related papers (2021-10-10T18:08:42Z) - Testing quantum theory with thought experiments [4.847980206213335]
How should one model systems that include agents who are themselves using quantum theory?
We give a state-of-the-art overview on quantum thought experiments involving observers.
arXiv Detail & Related papers (2021-06-09T18:08:23Z) - Demystifying Quantum Mechanics [0.0]
We discuss the concepts of physical reality imposed by quantum mechanics, the role of the observer, prediction limits, a definition of collapse, and how to deal with correlated states.
The discussion is carried out within the framework of accepting that there is in fact nothing important missing, rather we are just restricted by the limitations imposed by quantum mechanics.
arXiv Detail & Related papers (2021-06-03T22:32:11Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.