Anomaly detection in Context-aware Feature Models
- URL: http://arxiv.org/abs/2007.14070v1
- Date: Tue, 28 Jul 2020 08:59:14 GMT
- Title: Anomaly detection in Context-aware Feature Models
- Authors: Jacopo Mauro
- Abstract summary: We formalize the anomaly analysis in Context-aware Feature Models.
We show how QBF solvers can be used to detect anomalies without relying on iterative calls to a SAT solver.
- Score: 1.0660480034605242
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Feature Models are a mechanism to organize the configuration space and
facilitate the construction of software variants by describing configuration
options using features, i.e., a name representing a functionality. The
development of Feature Models is an error prone activity and detecting their
anomalies is a challenging and important task needed to promote their usage.
Recently, Feature Models have been extended with context to capture the
correlation of configuration options with contextual influences and user
customizations. Unfortunately, this extension makes the task of detecting
anomalies harder. In this paper, we formalize the anomaly analysis in
Context-aware Feature Models and we show how Quantified Boolean Formula (QBF)
solvers can be used to detect anomalies without relying on iterative calls to a
SAT solver. By extending the reconfigurator engine HyVarRec, we present
findings evidencing that QBF solvers can outperform the common techniques for
anomaly analysis.
Related papers
- Spurious Feature Eraser: Stabilizing Test-Time Adaptation for Vision-Language Foundation Model [86.9619638550683]
Vision-language foundation models have exhibited remarkable success across a multitude of downstream tasks due to their scalability on extensive image-text paired data.
However, these models display significant limitations when applied to downstream tasks, such as fine-grained image classification, as a result of decision shortcuts''
arXiv Detail & Related papers (2024-03-01T09:01:53Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
Video anomaly detection (VAD) with weak supervision has achieved remarkable performance in utilizing video-level labels to discriminate whether a video frame is normal or abnormal.
Recent studies attempt to tackle a more realistic setting, open-set VAD, which aims to detect unseen anomalies given seen anomalies and normal videos.
This paper takes a step further and explores open-vocabulary video anomaly detection (OVVAD), in which we aim to leverage pre-trained large models to detect and categorize seen and unseen anomalies.
arXiv Detail & Related papers (2023-11-13T02:54:17Z) - Causal Feature Selection via Transfer Entropy [59.999594949050596]
Causal discovery aims to identify causal relationships between features with observational data.
We introduce a new causal feature selection approach that relies on the forward and backward feature selection procedures.
We provide theoretical guarantees on the regression and classification errors for both the exact and the finite-sample cases.
arXiv Detail & Related papers (2023-10-17T08:04:45Z) - LafitE: Latent Diffusion Model with Feature Editing for Unsupervised
Multi-class Anomaly Detection [12.596635603629725]
We develop a unified model to detect anomalies from objects belonging to multiple classes when only normal data is accessible.
We first explore the generative-based approach and investigate latent diffusion models for reconstruction.
We introduce a feature editing strategy that modifies the input feature space of the diffusion model to further alleviate identity shortcuts''
arXiv Detail & Related papers (2023-07-16T14:41:22Z) - Increasing Performance And Sample Efficiency With Model-agnostic
Interactive Feature Attributions [3.0655581300025996]
We provide model-agnostic implementations for two popular explanation methods (Occlusion and Shapley values) to enforce entirely different attributions in the complex model.
We show how our proposed approach can significantly improve the model's performance only by augmenting its training dataset based on corrected explanations.
arXiv Detail & Related papers (2023-06-28T15:23:28Z) - Amortized Inference for Causal Structure Learning [72.84105256353801]
Learning causal structure poses a search problem that typically involves evaluating structures using a score or independence test.
We train a variational inference model to predict the causal structure from observational/interventional data.
Our models exhibit robust generalization capabilities under substantial distribution shift.
arXiv Detail & Related papers (2022-05-25T17:37:08Z) - Top-$k$ Regularization for Supervised Feature Selection [11.927046591097623]
We introduce a novel, simple yet effective regularization approach, named top-$k$ regularization, to supervised feature selection.
We show that the top-$k$ regularization is effective and stable for supervised feature selection.
arXiv Detail & Related papers (2021-06-04T01:12:47Z) - DirectDebug: Automated Testing and Debugging of Feature Models [55.41644538483948]
Variability models (e.g., feature models) are a common way for the representation of variabilities and commonalities of software artifacts.
Complex and often large-scale feature models can become faulty, i.e., do not represent the expected variability properties of the underlying software artifact.
arXiv Detail & Related papers (2021-02-11T11:22:20Z) - Video Anomaly Detection by Estimating Likelihood of Representations [21.879366166261228]
Video anomaly is a challenging task because it involves solving many sub-tasks such as motion representation, object localization and action recognition.
Traditionally, solutions to this task have focused on the mapping between video frames and their low-dimensional features, while ignoring the spatial connections of those features.
Recent solutions focus on analyzing these spatial connections by using hard clustering techniques, such as K-Means, or applying neural networks to map latent features to a general understanding.
In order to solve video anomaly in the latent feature space, we propose a deep probabilistic model to transfer this task into a density estimation problem.
arXiv Detail & Related papers (2020-12-02T19:16:22Z) - Learning Causal Models Online [103.87959747047158]
Predictive models can rely on spurious correlations in the data for making predictions.
One solution for achieving strong generalization is to incorporate causal structures in the models.
We propose an online algorithm that continually detects and removes spurious features.
arXiv Detail & Related papers (2020-06-12T20:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.