論文の概要: UNIPoint: Universally Approximating Point Processes Intensities
- arxiv url: http://arxiv.org/abs/2007.14082v4
- Date: Wed, 3 Mar 2021 01:07:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 01:34:25.123124
- Title: UNIPoint: Universally Approximating Point Processes Intensities
- Title(参考訳): UNIPoint: ポイントプロセスインテンシティを普遍的に近似する
- Authors: Alexander Soen, Alexander Mathews, Daniel Grixti-Cheng, Lexing Xie
- Abstract要約: 学習可能な関数のクラスが任意の有効な強度関数を普遍的に近似できることを示す。
ニューラルポイントプロセスモデルであるUNIPointを実装し,各イベントの基底関数の和をパラメータ化するために,リカレントニューラルネットワークを用いた。
- 参考スコア(独自算出の注目度): 125.08205865536577
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Point processes are a useful mathematical tool for describing events over
time, and so there are many recent approaches for representing and learning
them. One notable open question is how to precisely describe the flexibility of
point process models and whether there exists a general model that can
represent all point processes. Our work bridges this gap. Focusing on the
widely used event intensity function representation of point processes, we
provide a proof that a class of learnable functions can universally approximate
any valid intensity function. The proof connects the well known
Stone-Weierstrass Theorem for function approximation, the uniform density of
non-negative continuous functions using a transfer functions, the formulation
of the parameters of a piece-wise continuous functions as a dynamic system, and
a recurrent neural network implementation for capturing the dynamics. Using
these insights, we design and implement UNIPoint, a novel neural point process
model, using recurrent neural networks to parameterise sums of basis function
upon each event. Evaluations on synthetic and real world datasets show that
this simpler representation performs better than Hawkes process variants and
more complex neural network-based approaches. We expect this result will
provide a practical basis for selecting and tuning models, as well as
furthering theoretical work on representational complexity and learnability.
- Abstract(参考訳): ポイントプロセスは、イベントを時間とともに記述するための有用な数学的ツールである。
注目すべき疑問の1つは、ポイントプロセスモデルの柔軟性をいかに正確に記述するか、そして全てのポイントプロセスを表現する一般的なモデルが存在するかどうかである。
私たちの仕事はこのギャップを埋める。
点過程の事象強度関数の表現に焦点をあて、学習可能な関数のクラスが任意の有効な強度関数を普遍的に近似できることを示す。
この証明は、関数近似のためのよく知られたストーン・ワイエルシュトラス理論、伝達関数を用いた非負連続関数の均一密度、動的システムとしてのピースワイズ連続関数のパラメータの定式化、および力学を捉えるための繰り返しニューラルネットワークの実装を結びつける。
これらの知見を用いて,新しいニューラルポイントプロセスモデルであるunipointを設計・実装し,各事象に対する基底関数の和をパラメータ化するために再帰ニューラルネットワークを用いた。
合成および実世界のデータセットの評価によると、この単純な表現は、ホークスプロセスの変種やより複雑なニューラルネットワークベースのアプローチよりも優れている。
この結果は、モデルの選択とチューニング、および表現の複雑さと学習可能性に関する理論的研究を促進するための実用的な基礎を提供すると期待する。
関連論文リスト
- Approximation of RKHS Functionals by Neural Networks [30.42446856477086]
ニューラルネットワークを用いたHilbert空間(RKHS)を再現するカーネル上の関数の近似について検討する。
逆多重四元数、ガウス、ソボレフのカーネルによって誘導される場合の明示的な誤差境界を導出する。
ニューラルネットワークが回帰マップを正確に近似できることを示すため,機能回帰に本研究の成果を適用した。
論文 参考訳(メタデータ) (2024-03-18T18:58:23Z) - Going Beyond Neural Network Feature Similarity: The Network Feature
Complexity and Its Interpretation Using Category Theory [64.06519549649495]
機能的に等価な機能と呼ぶものの定義を提供します。
これらの特徴は特定の変換の下で等価な出力を生成する。
反復的特徴マージ(Iterative Feature Merging)というアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-10T16:27:12Z) - Versatile Neural Processes for Learning Implicit Neural Representations [57.090658265140384]
本稿では,近似関数の能力を大幅に向上させるVersatile Neural Processs (VNP)を提案する。
具体的には、より少ない情報的コンテキストトークンを生成するボトルネックエンコーダを導入し、高い計算コストを軽減した。
提案したVNPが1D, 2D, 3D信号を含む様々なタスクに対して有効であることを示す。
論文 参考訳(メタデータ) (2023-01-21T04:08:46Z) - NeuralEF: Deconstructing Kernels by Deep Neural Networks [47.54733625351363]
従来のNystr"om式に基づく非パラメトリックなソリューションはスケーラビリティの問題に悩まされる。
最近の研究はパラメトリックなアプローチ、すなわち固有関数を近似するためにニューラルネットワークを訓練している。
教師なしおよび教師なしの学習問題の空間に一般化する新たな目的関数を用いて,これらの問題を解くことができることを示す。
論文 参考訳(メタデータ) (2022-04-30T05:31:07Z) - Inducing Gaussian Process Networks [80.40892394020797]
本稿では,特徴空間と誘導点を同時に学習するシンプルなフレームワークであるGaussian Process Network (IGN)を提案する。
特に誘導点は特徴空間で直接学習され、複雑な構造化領域のシームレスな表現を可能にする。
実世界のデータセットに対する実験結果から,IGNは最先端の手法よりも大幅に進歩していることを示す。
論文 参考訳(メタデータ) (2022-04-21T05:27:09Z) - Shallow Representation is Deep: Learning Uncertainty-aware and
Worst-case Random Feature Dynamics [1.1470070927586016]
本稿では,不確実な系モデルを普遍核ヒルベルト空間における未知あるいは不確実な滑らかな関数とみなす。
パラメータの不確かさのあるランダムな特徴を用いて1段階の動的関数を直接近似することにより、力学系全体を多層ニューラルネットワークとみなす。
論文 参考訳(メタデータ) (2021-06-24T14:48:12Z) - On Function Approximation in Reinforcement Learning: Optimism in the
Face of Large State Spaces [208.67848059021915]
強化学習のコアにおける探索・探索トレードオフについて検討する。
特に、関数クラス $mathcalF$ の複雑さが関数の複雑さを特徴づけていることを証明する。
私たちの後悔の限界はエピソードの数とは無関係です。
論文 参考訳(メタデータ) (2020-11-09T18:32:22Z) - Estimating Multiplicative Relations in Neural Networks [0.0]
対数関数の特性を用いて、積を線形表現に変換し、バックプロパゲーションを用いて学習できるアクティベーション関数のペアを提案する。
いくつかの複雑な算術関数に対してこのアプローチを一般化し、トレーニングセットとの不整合分布の精度を検証しようと試みる。
論文 参考訳(メタデータ) (2020-10-28T14:28:24Z) - Deep Learning with Functional Inputs [0.0]
本稿では,機能データをフィードフォワードニューラルネットワークに統合する手法を提案する。
この手法の副産物は、最適化プロセス中に可視化できる動的な機能的重みの集合である。
このモデルは、新しいデータの予測や真の機能的重みの回復など、多くの文脈でうまく機能することが示されている。
論文 参考訳(メタデータ) (2020-06-17T01:23:00Z) - Formal Synthesis of Lyapunov Neural Networks [61.79595926825511]
本稿では,リアプノフ関数の自動合成法を提案する。
我々は,数値学習者と記号検証器が相互作用して,確実に正しいリアプノフニューラルネットワークを構築する,反例誘導方式を採用する。
提案手法は,Lyapunov関数を他の手法よりも高速かつ広い空間領域で合成する。
論文 参考訳(メタデータ) (2020-03-19T17:21:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。