論文の概要: Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training
- arxiv url: http://arxiv.org/abs/2007.14120v2
- Date: Wed, 12 May 2021 16:38:47 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 01:25:37.046463
- Title: Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training
- Title(参考訳): 分類と回帰モデルの到達可能な集合:(Non-)ロバスト性解析とロバストトレーニング
- Authors: Anna-Kathrin Kopetzki, Stephan G\"unnemann
- Abstract要約: 分類器と回帰モデルの両方の頑健性特性を解析・拡張する。
具体的には、(非)難易度を検証し、堅牢なトレーニング手順を提案し、我々のアプローチが敵攻撃よりも優れていることを示す。
第2に、ラベル付けされていない入力に対する信頼できない予測と信頼できない予測を区別し、各特徴が予測に与える影響を定量化し、特徴ランキングを計算する技術を提供する。
- 参考スコア(独自算出の注目度): 1.0878040851638
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural networks achieve outstanding accuracy in classification and regression
tasks. However, understanding their behavior still remains an open challenge
that requires questions to be addressed on the robustness, explainability and
reliability of predictions. We answer these questions by computing reachable
sets of neural networks, i.e. sets of outputs resulting from continuous sets of
inputs. We provide two efficient approaches that lead to over- and
under-approximations of the reachable set. This principle is highly versatile,
as we show. First, we use it to analyze and enhance the robustness properties
of both classifiers and regression models. This is in contrast to existing
works, which are mainly focused on classification. Specifically, we verify
(non-)robustness, propose a robust training procedure, and show that our
approach outperforms adversarial attacks as well as state-of-the-art methods of
verifying classifiers for non-norm bound perturbations. Second, we provide
techniques to distinguish between reliable and non-reliable predictions for
unlabeled inputs, to quantify the influence of each feature on a prediction,
and compute a feature ranking.
- Abstract(参考訳): ニューラルネットワークは、分類および回帰タスクにおいて顕著な精度を達成する。
しかし、それらの振る舞いを理解することは依然としてオープンな課題であり、予測の堅牢性、説明可能性、信頼性に対処する必要がある。
ニューラルネットワークの到達可能な集合、すなわち連続的な入力集合から得られる出力の集合を計算することで、これらの質問に答える。
到達可能な集合の過度および過小近似につながる2つの効率的なアプローチを提供する。
この原則は、私たちが示すように、非常に多様です。
まず,分類器と回帰モデルのロバスト性特性を分析し,拡張するために使用する。
これは、主に分類に焦点を当てた既存の作品とは対照的である。
具体的には,(非)ロバスト性を検証するとともに,ロバストなトレーニング手順を提案するとともに,非ノルム境界摂動に対する分類器を検証する最先端手法と同様に,敵攻撃を克服する手法を提案する。
第2に,ラベルなし入力に対する信頼性の高い予測と信頼性の低い予測を区別し,各特徴の予測への影響を定量化し,特徴ランキングを計算する手法を提案する。
関連論文リスト
- Generalization bounds for regression and classification on adaptive covering input domains [1.4141453107129398]
一般化誤差の上限となる一般化境界に着目する。
分類タスクの場合、対象関数を1ホット、ピースワイド定数関数として扱い、誤差測定に0/1ロスを用いる。
論文 参考訳(メタデータ) (2024-07-29T05:40:08Z) - Learning Robust Classifiers with Self-Guided Spurious Correlation Mitigation [26.544938760265136]
ディープニューラル分類器は、入力のスプリアス属性とターゲットの間のスプリアス相関に頼り、予測を行う。
本稿では,自己誘導型スプリアス相関緩和フレームワークを提案する。
予測行動の違いを識別するために分類器の訓練を行うことで,事前知識を必要とせず,素因関係への依存を軽減できることを示す。
論文 参考訳(メタデータ) (2024-05-06T17:12:21Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
本稿では,様々な分類タスクにおいて,逆向きに事前訓練されたモデルの微調整に焦点を当てる。
本稿では,TWINS(Two-WIng NormliSation)ファインチューニングフレームワークを提案する。
TWINSは、一般化とロバスト性の両方の観点から、幅広い画像分類データセットに有効であることが示されている。
論文 参考訳(メタデータ) (2023-03-20T14:12:55Z) - Addressing Mistake Severity in Neural Networks with Semantic Knowledge [0.0]
ほとんどの堅牢なトレーニング技術は、摂動入力のモデル精度を改善することを目的としている。
強靭性の代替形態として、ニューラルネットワークが挑戦的な状況で犯した誤りの深刻度を低減することを目的としている。
我々は、現在の対人訓練手法を活用して、トレーニングプロセス中に標的の対人攻撃を発生させる。
その結果,本手法は,標準モデルや逆トレーニングモデルと比較して,誤り重大性に対して優れた性能を示した。
論文 参考訳(メタデータ) (2022-11-21T22:01:36Z) - Tribrid: Stance Classification with Neural Inconsistency Detection [9.150728831518459]
本稿では,BERTなどのニューラルアーキテクチャを用いたソーシャルメディア上での自動姿勢分類を行う際の課題について検討する。
提案するニューラルアーキテクチャでは,任意のクレームに対して自動生成された否定的視点も含んでいる。
モデルは同時に複数の予測を行うように共同で学習され、元の視点の分類を改善するか、疑わしい予測をフィルタリングするために使用することができる。
論文 参考訳(メタデータ) (2021-09-14T08:13:03Z) - Improving Uncertainty Calibration via Prior Augmented Data [56.88185136509654]
ニューラルネットワークは、普遍関数近似器として機能することで、複雑なデータ分布から学習することに成功した。
彼らはしばしば予測に自信過剰であり、不正確で誤った確率的予測に繋がる。
本稿では,モデルが不当に過信である特徴空間の領域を探索し,それらの予測のエントロピーをラベルの以前の分布に対して条件的に高める手法を提案する。
論文 参考訳(メタデータ) (2021-02-22T07:02:37Z) - Robust Pre-Training by Adversarial Contrastive Learning [120.33706897927391]
近年の研究では、敵の訓練と統合されると、自己監督型事前訓練が最先端の堅牢性につながることが示されている。
我々は,データ強化と対向的摂動の両面に整合した学習表現により,ロバストネスを意識した自己指導型事前学習を改善する。
論文 参考訳(メタデータ) (2020-10-26T04:44:43Z) - Revisiting One-vs-All Classifiers for Predictive Uncertainty and
Out-of-Distribution Detection in Neural Networks [22.34227625637843]
識別型分類器における確率のパラメトリゼーションが不確実性推定に与える影響について検討する。
画像分類タスクのキャリブレーションを改善するために, 1-vs-all の定式化が可能であることを示す。
論文 参考訳(メタデータ) (2020-07-10T01:55:02Z) - Provable tradeoffs in adversarially robust classification [96.48180210364893]
我々は、ロバストなイソペリメトリに関する確率論の最近のブレークスルーを含む、新しいツールを開発し、活用する。
この結果から,データの不均衡時に増加する標準精度とロバスト精度の基本的なトレードオフが明らかになった。
論文 参考訳(メタデータ) (2020-06-09T09:58:19Z) - Hidden Cost of Randomized Smoothing [72.93630656906599]
本稿では、現在のランダム化平滑化による副作用を指摘する。
具体的には,1)スムーズな分類器の決定境界が小さくなり,クラスレベルでの精度の相違が生じること,2)学習過程における雑音増強の適用は,一貫性のない学習目的による縮小問題を必ずしも解決しない,という2つの主要なポイントを具体化し,証明する。
論文 参考訳(メタデータ) (2020-03-02T23:37:42Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。