CovMUNET: A Multiple Loss Approach towards Detection of COVID-19 from
Chest X-ray
- URL: http://arxiv.org/abs/2007.14318v2
- Date: Sat, 29 Aug 2020 16:53:54 GMT
- Title: CovMUNET: A Multiple Loss Approach towards Detection of COVID-19 from
Chest X-ray
- Authors: A.Q.M. Sazzad Sayyed, Dipayan Saha, Abdul Rakib Hossain
- Abstract summary: CovMUNET is a multiple loss deep neural network approach to detect COVID-19 cases from CXR images.
The proposed neural architecture also successfully detects the abnormality in CXR images.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent outbreak of COVID-19 has halted the whole world, bringing a
devastating effect on public health, global economy, and educational systems.
As the vaccine of the virus is still not available, the most effective way to
combat the virus is testing and social distancing. Among all other detection
techniques, the Chest X-ray (CXR) based method can be a good solution for its
simplicity, rapidity, cost, efficiency, and accessibility. In this paper, we
propose CovMUNET, which is a multiple loss deep neural network approach to
detect COVID-19 cases from CXR images. Extensive experiments are performed to
ensure the robustness of the proposed algorithm and the performance is
evaluated in terms of precision, recall, accuracy, and F1-score. The proposed
method outperforms the state-of-the-art approaches with an accuracy of 96.97%
for 3-class classification (COVID-19 vs normal vs pneumonia) and 99.41% for
2-class classification (COVID vs non-COVID). The proposed neural architecture
also successfully detects the abnormality in CXR images.
Related papers
- A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
COVID-19 was first identified in Wuhan and quickly spread worldwide.
Most accessible method for COVID-19 identification is RT-PCR.
Compared to RT-PCR, chest CT scans and chest X-ray images provide superior results.
DenseNet169 was employed to extract features from X-ray images.
arXiv Detail & Related papers (2021-09-30T16:10:31Z) - Classification of COVID-19 from CXR Images in a 15-class Scenario: an
Attempt to Avoid Bias in the System [0.0]
WHO has reported 171.7 million confirmed cases including 3,698,621 deaths from COVID-19.
The proposed system consists of a CXR image selection technique and a deep learning based model to classify 15 diseases including COVID-19.
arXiv Detail & Related papers (2021-09-25T22:42:29Z) - The Report on China-Spain Joint Clinical Testing for Rapid COVID-19 Risk
Screening by Eye-region Manifestations [59.48245489413308]
We developed and tested a COVID-19 rapid prescreening model using the eye-region images captured in China and Spain with cellphone cameras.
The performance was measured using area under receiver-operating-characteristic curve (AUC), sensitivity, specificity, accuracy, and F1.
arXiv Detail & Related papers (2021-09-18T02:28:01Z) - COVID-Net US: A Tailored, Highly Efficient, Self-Attention Deep
Convolutional Neural Network Design for Detection of COVID-19 Patient Cases
from Point-of-care Ultrasound Imaging [101.27276001592101]
We introduce COVID-Net US, a highly efficient, self-attention deep convolutional neural network design tailored for COVID-19 screening from lung POCUS images.
Experimental results show that the proposed COVID-Net US can achieve an AUC of over 0.98 while achieving 353X lower architectural complexity, 62X lower computational complexity, and 14.3X faster inference times on a Raspberry Pi.
To advocate affordable healthcare and artificial intelligence for resource-constrained environments, we have made COVID-Net US open source and publicly available as part of the COVID-Net open source initiative.
arXiv Detail & Related papers (2021-08-05T16:47:33Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - Detecting COVID-19 from Breathing and Coughing Sounds using Deep Neural
Networks [68.8204255655161]
We adapt an ensemble of Convolutional Neural Networks to classify if a speaker is infected with COVID-19 or not.
Ultimately, it achieves an Unweighted Average Recall (UAR) of 74.9%, or an Area Under ROC Curve (AUC) of 80.7% by ensembling neural networks.
arXiv Detail & Related papers (2020-12-29T01:14:17Z) - Classification of COVID-19 in CT Scans using Multi-Source Transfer
Learning [91.3755431537592]
We propose the use of Multi-Source Transfer Learning to improve upon traditional Transfer Learning for the classification of COVID-19 from CT scans.
With our multi-source fine-tuning approach, our models outperformed baseline models fine-tuned with ImageNet.
Our best performing model was able to achieve an accuracy of 0.893 and a Recall score of 0.897, outperforming its baseline Recall score by 9.3%.
arXiv Detail & Related papers (2020-09-22T11:53:06Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Automatic Detection of Coronavirus Disease (COVID-19) in X-ray and CT
Images: A Machine Learning-Based Approach [2.488407849738164]
COVID-19 is highly transmittable and pathogenic with no clinically approved antiviral drug or vaccine available for treatment.
Medical imaging is not currently recommended in Canada for primary diagnosis of COVID-19.
In this study, we compare popular deep learning-based feature extraction frameworks for automatic COVID-19 classification.
arXiv Detail & Related papers (2020-04-22T15:34:45Z) - Towards an Effective and Efficient Deep Learning Model for COVID-19
Patterns Detection in X-ray Images [2.21653002719733]
The main goal of this work is to propose an accurate yet efficient method for the problem of COVID-19 screening in chest X-rays.
A dataset of 13,569 X-ray images divided into healthy, non-COVID-19 pneumonia, and COVID-19 patients is used to train the proposed approaches.
Results: The proposed approach was able to produce a high-quality model, with an overall accuracy of 93.9%, COVID-19, sensitivity of 96.8% and positive prediction of 100%.
arXiv Detail & Related papers (2020-04-12T23:26:56Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.