Classification of COVID-19 from CXR Images in a 15-class Scenario: an
Attempt to Avoid Bias in the System
- URL: http://arxiv.org/abs/2109.12453v1
- Date: Sat, 25 Sep 2021 22:42:29 GMT
- Title: Classification of COVID-19 from CXR Images in a 15-class Scenario: an
Attempt to Avoid Bias in the System
- Authors: Chinmoy Bose and Anirvan Basu
- Abstract summary: WHO has reported 171.7 million confirmed cases including 3,698,621 deaths from COVID-19.
The proposed system consists of a CXR image selection technique and a deep learning based model to classify 15 diseases including COVID-19.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: As of June 2021, the World Health Organization (WHO) has reported 171.7
million confirmed cases including 3,698,621 deaths from COVID-19. Detecting
COVID-19 and other lung diseases from Chest X-Ray (CXR) images can be very
effective for emergency diagnosis and treatment as CXR is fast and cheap. The
objective of this study is to develop a system capable of detecting COVID-19
along with 14 other lung diseases from CXRs in a fair and unbiased manner. The
proposed system consists of a CXR image selection technique and a deep learning
based model to classify 15 diseases including COVID-19. The proposed CXR
selection technique aims to retain the maximum variation uniformly and
eliminate poor quality CXRs with the goal of reducing the training dataset size
without compromising classifier accuracy. More importantly, it reduces the
often hidden bias and unfairness in decision making. The proposed solution
exhibits a promising COVID-19 detection scheme in a more realistic situation
than most existing studies as it deals with 15 lung diseases together. We hope
the proposed method will have wider adoption in medical image classification
and other related fields.
Related papers
- Optimising Chest X-Rays for Image Analysis by Identifying and Removing
Confounding Factors [49.005337470305584]
During the COVID-19 pandemic, the sheer volume of imaging performed in an emergency setting for COVID-19 diagnosis has resulted in a wide variability of clinical CXR acquisitions.
The variable quality of clinically-acquired CXRs within publicly available datasets could have a profound effect on algorithm performance.
We propose a simple and effective step-wise approach to pre-processing a COVID-19 chest X-ray dataset to remove undesired biases.
arXiv Detail & Related papers (2022-08-22T13:57:04Z) - COVIDx CXR-3: A Large-Scale, Open-Source Benchmark Dataset of Chest
X-ray Images for Computer-Aided COVID-19 Diagnostics [69.55060769611916]
The use of chest X-ray (CXR) imaging as a complementary screening strategy to RT-PCR testing is increasing.
Many visual perception models have been proposed for COVID-19 screening based on CXR imaging.
We introduce COVIDx CXR-3, a large-scale benchmark dataset of CXR images for supporting COVID-19 computer vision research.
arXiv Detail & Related papers (2022-06-08T04:39:44Z) - A novel framework based on deep learning and ANOVA feature selection
method for diagnosis of COVID-19 cases from chest X-ray Images [0.0]
COVID-19 was first identified in Wuhan and quickly spread worldwide.
Most accessible method for COVID-19 identification is RT-PCR.
Compared to RT-PCR, chest CT scans and chest X-ray images provide superior results.
DenseNet169 was employed to extract features from X-ray images.
arXiv Detail & Related papers (2021-09-30T16:10:31Z) - COVID-19 Detection from Chest X-ray Images using Imprinted Weights
Approach [67.05664774727208]
Chest radiography is an alternative screening method for the COVID-19.
Computer-aided diagnosis (CAD) has proven to be a viable solution at low cost and with fast speed.
To address this challenge, we propose the use of a low-shot learning approach named imprinted weights.
arXiv Detail & Related papers (2021-05-04T19:01:40Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z) - COVID-19 Infection Localization and Severity Grading from Chest X-ray
Images [3.4546388019336143]
Coronavirus disease 2019 (COVID-19) has been the main agenda of the whole world, since it came into sight in December 2019.
We have constructed the largest benchmark dataset with 33,920 CXR images, including 11,956 COVID-19 samples.
The proposed approach has achieved an outstanding COVID-19 detection performance with both sensitivity and specificity values above 99%.
arXiv Detail & Related papers (2021-03-14T18:06:06Z) - CovMUNET: A Multiple Loss Approach towards Detection of COVID-19 from
Chest X-ray [0.0]
CovMUNET is a multiple loss deep neural network approach to detect COVID-19 cases from CXR images.
The proposed neural architecture also successfully detects the abnormality in CXR images.
arXiv Detail & Related papers (2020-07-28T15:40:13Z) - Synergistic Learning of Lung Lobe Segmentation and Hierarchical
Multi-Instance Classification for Automated Severity Assessment of COVID-19
in CT Images [61.862364277007934]
We propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images.
A multi-task deep network (called M$2$UNet) is then developed to assess the severity of COVID-19 patients.
Our M$2$UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment.
arXiv Detail & Related papers (2020-05-08T03:16:15Z) - A Cascaded Learning Strategy for Robust COVID-19 Pneumonia Chest X-Ray
Screening [11.250464234368478]
We introduce a comprehensive screening platform for the COVID-19 (a.k.a., SARS-CoV-2) pneumonia.
The proposed AI-based system works on chest x-ray (CXR) images to predict whether a patient is infected with the COVID-19 disease.
arXiv Detail & Related papers (2020-04-24T15:44:51Z) - Automated diagnosis of COVID-19 with limited posteroanterior chest X-ray
images using fine-tuned deep neural networks [4.294650528226683]
COVID-19 is a respiratory syndrome that resembles pneumonia.
Scientists, researchers and healthcare experts are contributing for faster and automated diagnosis of COVID-19 by identifying pulmonary infections.
This article presents the random oversampling and weighted class loss function approach for unbiased fine-tuned learning (transfer learning) in various state-of-the-art deep learning approaches.
arXiv Detail & Related papers (2020-04-23T10:24:34Z) - Residual Attention U-Net for Automated Multi-Class Segmentation of
COVID-19 Chest CT Images [46.844349956057776]
coronavirus disease 2019 (COVID-19) has been spreading rapidly around the world and caused significant impact on the public health and economy.
There is still lack of studies on effectively quantifying the lung infection caused by COVID-19.
We propose a novel deep learning algorithm for automated segmentation of multiple COVID-19 infection regions.
arXiv Detail & Related papers (2020-04-12T16:24:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.