Probing Quantum Speed Limits with Ultracold Gases
- URL: http://arxiv.org/abs/2007.15019v3
- Date: Thu, 1 Apr 2021 07:02:38 GMT
- Title: Probing Quantum Speed Limits with Ultracold Gases
- Authors: Adolfo del Campo
- Abstract summary: We propose how to measure Quantum Speed Limits (QSLs) in an ultracold quantum gas confined in a time-dependent harmonic trap.
QSLs rule the minimum time for a quantum state to evolve into a distinguishable state in an arbitrary physical process.
This makes possible to determine the Bures angle and energy fluctuations, as we discuss for various ultracold atomic systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum Speed Limits (QSLs) rule the minimum time for a quantum state to
evolve into a distinguishable state in an arbitrary physical process. These
fundamental results constrain a notion of distance travelled by the quantum
state, known as the Bures angle, in terms of the speed of evolution set by
nonadiabatic energy fluctuations. We theoretically propose how to measure QSLs
in an ultracold quantum gas confined in a time-dependent harmonic trap. In this
highly-dimensional system of continuous variables, quantum tomography is
prohibited. Yet, QSLs can be probed whenever the dynamics is self-similar by
measuring as a function of time the cloud size of the ultracold gas. This makes
possible to determine the Bures angle and energy fluctuations, as we discuss
for various ultracold atomic systems.
Related papers
- Topological control of quantum speed limits [55.2480439325792]
We show that even if the quantum state is completely dispersionless, QFI in this state remains momentum-resolved.<n>We find bounds on quantum speed limit which scales as $sqrt|C|$ in a (dispersionless) topological phase.
arXiv Detail & Related papers (2025-07-21T18:00:07Z) - Generalized Entropic Quantum Speed Limits [0.0]
We present a class of generalized entropic quantum speed limits based on $alpha$-$z$-R'enyi relative entropy.<n>The quantum speed limit (QSL) falls into the class of Mandelstam-Tamm bounds.<n>Results cover pure or mixed, separable, and entangled probe quantum states.
arXiv Detail & Related papers (2025-01-19T13:51:18Z) - Effect of measurements on quantum speed limit [0.0]
We show that under continuous measurement, the speed of transportation of a quantum system tends to zero.
For small time scale, there is an enhancement of quantum speed even if the measurement strength is finite.
Our findings can have applications in quantum computing and quantum control where dynamics is governed by both unitary and measurement processes.
arXiv Detail & Related papers (2024-06-13T11:14:22Z) - Quantum Speed Limit for Change of Basis [55.500409696028626]
We extend the notion of quantum speed limits to collections of quantum states.
For two-qubit systems, we show that the fastest transformation implements two Hadamards and a swap of the qubits simultaneously.
For qutrit systems the evolution time depends on the particular type of the unbiased basis.
arXiv Detail & Related papers (2022-12-23T14:10:13Z) - Quantum Speed Limit under Brachistochrone Evolution [0.0]
We propose a geometrical approach to derive a quantum speed limit (QSL) bound for closed and open quantum systems.
We show that the QSL between a given initial state to a final state is determined not only by the entire dynamics of the system but also by the individual dynamics of a critical parameter.
arXiv Detail & Related papers (2022-07-30T14:30:01Z) - Generalised quantum speed limit for arbitrary time-continuous evolution [0.0]
We derive a generalised quantum speed limit (GQSL) for arbitrary time-continuous evolution using the geometrical approach of quantum mechanics.
The GQSL is applicable for quantum systems undergoing unitary, non-unitary, completely positive, non-completely positive and relativistic quantum dynamics.
arXiv Detail & Related papers (2022-07-08T21:00:11Z) - Quantum Speed Limits for Observables [0.0]
In the Schr"odinger picture, the state of a quantum system evolves in time.
In the Heisenberg picture the observable evolves in time instead of the state vector.
We obtain the quantum speed limit time-bound for observable for closed systems, open quantum systems and arbitrary dynamics.
arXiv Detail & Related papers (2021-12-27T17:10:57Z) - Taking the temperature of a pure quantum state [55.41644538483948]
Temperature is a deceptively simple concept that still raises deep questions at the forefront of quantum physics research.
We propose a scheme to measure the temperature of such pure states through quantum interference.
arXiv Detail & Related papers (2021-03-30T18:18:37Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - The Time-Evolution of States in Quantum Mechanics [77.34726150561087]
It is argued that the Schr"odinger equation does not yield a correct description of the quantum-mechanical time evolution of states of isolated (open) systems featuring events.
A precise general law for the time evolution of states replacing the Schr"odinger equation is formulated within the so-called ETH-Approach to Quantum Mechanics.
arXiv Detail & Related papers (2021-01-04T16:09:10Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Quantum speed limit for thermal states [0.0]
Quantum speed limits are rigorous estimates on how fast a state of a quantum system can depart from the initial state in the course of quantum evolution.
Most known quantum speed limits, including the celebrated Mandelstam-Tamm and Margolus-Levitin ones, are general bounds applicable to arbitrary initial states.
Here we derive a quantum speed limit for a closed system initially prepared in a thermal state and evolving under a time-dependent Hamiltonian.
arXiv Detail & Related papers (2020-05-13T16:42:28Z) - Jumptime unraveling of Markovian open quantum systems [68.8204255655161]
We introduce jumptime unraveling as a distinct description of open quantum systems.
quantum jump trajectories emerge, physically, from continuous quantum measurements.
We demonstrate that quantum trajectories can also be ensemble-averaged at specific jump counts.
arXiv Detail & Related papers (2020-01-24T09:35:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.