論文の概要: Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images
- arxiv url: http://arxiv.org/abs/2007.15963v5
- Date: Fri, 23 Oct 2020 12:15:04 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-04 06:02:48.712856
- Title: Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images
- Title(参考訳): 医用画像のセグメンテーションにおける地中からのヒューマンエラーの遠ざけ
- Authors: Le Zhang, Ryutaro Tanno, Mou-Cheng Xu, Chen Jin, Joseph Jacob, Olga
Ciccarelli, Frederik Barkhof and Daniel C. Alexander
- Abstract要約: 本稿では,純粋にノイズの多い観測のみから,個々のアノテータの信頼性,真のセグメンテーションラベル分布まで,共同学習手法を提案する。
本手法は,必要ならばシミュレートした3つの医用画像セグメンテーションデータセットと実際の多彩なアノテーションに対して有効であることを示す。
- 参考スコア(独自算出の注目度): 12.009437407687987
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent years have seen increasing use of supervised learning methods for
segmentation tasks. However, the predictive performance of these algorithms
depends on the quality of labels. This problem is particularly pertinent in the
medical image domain, where both the annotation cost and inter-observer
variability are high. In a typical label acquisition process, different human
experts provide their estimates of the "true" segmentation labels under the
influence of their own biases and competence levels. Treating these noisy
labels blindly as the ground truth limits the performance that automatic
segmentation algorithms can achieve. In this work, we present a method for
jointly learning, from purely noisy observations alone, the reliability of
individual annotators and the true segmentation label distributions, using two
coupled CNNs. The separation of the two is achieved by encouraging the
estimated annotators to be maximally unreliable while achieving high fidelity
with the noisy training data. We first define a toy segmentation dataset based
on MNIST and study the properties of the proposed algorithm. We then
demonstrate the utility of the method on three public medical imaging
segmentation datasets with simulated (when necessary) and real diverse
annotations: 1) MSLSC (multiple-sclerosis lesions); 2) BraTS (brain tumours);
3) LIDC-IDRI (lung abnormalities). In all cases, our method outperforms
competing methods and relevant baselines particularly in cases where the number
of annotations is small and the amount of disagreement is large. The
experiments also show strong ability to capture the complex spatial
characteristics of annotators' mistakes.
- Abstract(参考訳): 近年,セグメンテーションタスクにおける教師あり学習手法の利用が増加している。
しかし、これらのアルゴリズムの予測性能はラベルの品質に依存する。
この問題は特に、アノテーションコストとオブザーバ間の可変性の両方が高い医療画像領域で発生します。
典型的なラベル取得プロセスにおいて、異なる人間の専門家は、自身のバイアスと能力レベルの影響下で「真の」セグメンテーションラベルの見積もりを提供する。
これらのノイズラベルを基本真実として盲目的に扱うことは、自動セグメンテーションアルゴリズムが達成できる性能を制限する。
本研究では,2つの結合型cnnを用いて,純粋に騒がしい観察のみ,個々の注釈器の信頼性,真のセグメンテーションラベル分布から協調学習を行う手法を提案する。
この2つの分離は、推定アノテータがノイズ訓練データで高い忠実性を達成しつつ、最大信頼できないように促すことによって達成される。
まず,MNISTに基づく玩具セグメンテーションデータセットを定義し,提案アルゴリズムの特性について検討する。
次に,本手法の有用性を,(必要であれば)シミュレートされた3つの医用画像セグメンテーションデータセット上で実証する。
1)mslsc(多発性硬化性病変)
2)BraTS(脳腫瘍)
3)LIDC-IDRI(肺異常)。
いずれの場合においても,提案手法は,特にアノテーション数が少なく不一致が大きい場合に,競合するメソッドや関連するベースラインよりも優れています。
実験はまた、アノテータのミスの複雑な空間特性を捉える強力な能力を示した。
関連論文リスト
- Guidelines for Cerebrovascular Segmentation: Managing Imperfect Annotations in the context of Semi-Supervised Learning [3.231698506153459]
教師付き学習法は、十分な量のラベル付きデータを入力した場合に優れた性能を達成する。
このようなラベルは一般的に、非常に時間がかかり、エラーが発生し、製造コストがかかる。
半教師付き学習アプローチはラベル付きデータとラベルなしデータの両方を活用する。
論文 参考訳(メタデータ) (2024-04-02T09:31:06Z) - Multi-task Explainable Skin Lesion Classification [54.76511683427566]
少ないラベル付きデータでよく一般化する皮膚病変に対する数発のショットベースアプローチを提案する。
提案手法は,アテンションモジュールや分類ネットワークとして機能するセグメンテーションネットワークの融合を含む。
論文 参考訳(メタデータ) (2023-10-11T05:49:47Z) - Drawing the Same Bounding Box Twice? Coping Noisy Annotations in Object
Detection with Repeated Labels [6.872072177648135]
そこで本研究では,基礎的真理推定手法に適合する新しい局所化アルゴリズムを提案する。
また,本アルゴリズムは,TexBiGデータセット上でのトレーニングにおいて,優れた性能を示す。
論文 参考訳(メタデータ) (2023-09-18T13:08:44Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
半教師付きバイオメディカルイメージセグメンテーションのための自己教師付き補正学習パラダイムを提案する。
共有エンコーダと2つの独立デコーダを含むデュアルタスクネットワークを設計する。
異なるタスクのための3つの医用画像分割データセットの実験により,本手法の優れた性能が示された。
論文 参考訳(メタデータ) (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
医用画像セグメンテーションのためのPatch Confidence Adrial Training (PCA) と呼ばれる半教師付き対向法を提案する。
PCAは各パッチの画素構造とコンテキスト情報を学習し、十分な勾配フィードバックを得る。
本手法は, 医用画像のセグメンテーションにおいて, 最先端の半教師付き手法より優れており, その有効性を示している。
論文 参考訳(メタデータ) (2022-07-24T07:45:47Z) - Deep Semi-supervised Knowledge Distillation for Overlapping Cervical
Cell Instance Segmentation [54.49894381464853]
本稿では, ラベル付きデータとラベルなしデータの両方を, 知識蒸留による精度向上に活用することを提案する。
摂動に敏感なサンプルマイニングを用いたマスク誘導型平均教師フレームワークを提案する。
実験の結果,ラベル付きデータのみから学習した教師付き手法と比較して,提案手法は性能を著しく向上することがわかった。
論文 参考訳(メタデータ) (2020-07-21T13:27:09Z) - Weakly-Supervised Segmentation for Disease Localization in Chest X-Ray
Images [0.0]
医用胸部X線画像のセマンティックセグメンテーションに対する新しいアプローチを提案する。
本手法は肺と胸壁の間の異常な空気量を検出するための胸部X線検査に適用可能である。
論文 参考訳(メタデータ) (2020-07-01T20:48:35Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
教師-学生最適化の非同期版であるATSOを提案する。
ATSOはラベルのないデータを2つのサブセットに分割し、モデルの微調整に1つのサブセットを交互に使用し、他のサブセットのラベルを更新する。
医用画像のセグメンテーションデータセットを2つ評価し,様々な半教師付き環境において優れた性能を示す。
論文 参考訳(メタデータ) (2020-06-24T04:05:12Z) - Semi-supervised Medical Image Classification with Relation-driven
Self-ensembling Model [71.80319052891817]
医用画像分類のための関係駆動型半教師付きフレームワークを提案する。
これは、摂動下で与えられた入力の予測一貫性を促進することでラベルのないデータを利用する。
本手法は,シングルラベルおよびマルチラベル画像分類のシナリオにおいて,最先端の半教師付き学習手法よりも優れる。
論文 参考訳(メタデータ) (2020-05-15T06:57:54Z) - Semi-supervised lung nodule retrieval [2.055949720959582]
コンテンツベース画像検索(CBIR)システムは、クエリ画像と類似度でランク付けされた一連の画像を出力する。
データセット要素間の類似性(例えばnodules間の類似性)に関する基礎的な真実は、容易には利用できない。
本研究は,(1)部分ラベル付きデータセットの自動アノテーション,(2)述語アノテーションに基づく意味的類似度距離空間の学習,という2つのステップを含む半教師付きアプローチを提案する。
LIDCデータセットを用いて肺結節検索を行い,予測された評価値から埋め込みを学習することが可能であることを示す。
論文 参考訳(メタデータ) (2020-05-04T19:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。