Exclusion and Inclusion -- A model agnostic approach to feature
importance in DNNs
- URL: http://arxiv.org/abs/2007.16010v1
- Date: Mon, 13 Jul 2020 07:50:53 GMT
- Title: Exclusion and Inclusion -- A model agnostic approach to feature
importance in DNNs
- Authors: Subhadip Maji, Arijit Ghosh Chowdhury, Raghav Bali and Vamsi M
Bhandaru
- Abstract summary: We introduce a model algorithm which calculates phrase-wise importance of input features.
Our approach is robust to outliers, implying that it only captures the essential aspects of the input.
- Score: 3.6888633946892044
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks in NLP have enabled systems to learn complex non-linear
relationships. One of the major bottlenecks towards being able to use DNNs for
real world applications is their characterization as black boxes. To solve this
problem, we introduce a model agnostic algorithm which calculates phrase-wise
importance of input features. We contend that our method is generalizable to a
diverse set of tasks, by carrying out experiments for both Regression and
Classification. We also observe that our approach is robust to outliers,
implying that it only captures the essential aspects of the input.
Related papers
- Supervised Gradual Machine Learning for Aspect Category Detection [0.9857683394266679]
Aspect Category Detection (ACD) aims to identify implicit and explicit aspects in a given review sentence.
We propose a novel approach to tackle the ACD task by combining Deep Neural Networks (DNNs) with Gradual Machine Learning (GML) in a supervised setting.
arXiv Detail & Related papers (2024-04-08T07:21:46Z) - Taming Reachability Analysis of DNN-Controlled Systems via
Abstraction-Based Training [14.787056022080625]
This paper presents a novel abstraction-based approach to bypass the crux of over-approximating DNNs in reachability analysis.
We extend conventional DNNs by inserting an additional abstraction layer, which abstracts a real number to an interval for training.
We devise the first black-box reachability analysis approach for DNN-controlled systems, where trained DNNs are only queried as black-box oracles for the actions on abstract states.
arXiv Detail & Related papers (2022-11-21T00:11:50Z) - Comparative Analysis of Interval Reachability for Robust Implicit and
Feedforward Neural Networks [64.23331120621118]
We use interval reachability analysis to obtain robustness guarantees for implicit neural networks (INNs)
INNs are a class of implicit learning models that use implicit equations as layers.
We show that our approach performs at least as well as, and generally better than, applying state-of-the-art interval bound propagation methods to INNs.
arXiv Detail & Related papers (2022-04-01T03:31:27Z) - Learning to Detect Critical Nodes in Sparse Graphs via Feature Importance Awareness [53.351863569314794]
The critical node problem (CNP) aims to find a set of critical nodes from a network whose deletion maximally degrades the pairwise connectivity of the residual network.
This work proposes a feature importance-aware graph attention network for node representation.
It combines it with dueling double deep Q-network to create an end-to-end algorithm to solve CNP for the first time.
arXiv Detail & Related papers (2021-12-03T14:23:05Z) - Generalization of Neural Combinatorial Solvers Through the Lens of
Adversarial Robustness [68.97830259849086]
Most datasets only capture a simpler subproblem and likely suffer from spurious features.
We study adversarial robustness - a local generalization property - to reveal hard, model-specific instances and spurious features.
Unlike in other applications, where perturbation models are designed around subjective notions of imperceptibility, our perturbation models are efficient and sound.
Surprisingly, with such perturbations, a sufficiently expressive neural solver does not suffer from the limitations of the accuracy-robustness trade-off common in supervised learning.
arXiv Detail & Related papers (2021-10-21T07:28:11Z) - Online Limited Memory Neural-Linear Bandits with Likelihood Matching [53.18698496031658]
We study neural-linear bandits for solving problems where both exploration and representation learning play an important role.
We propose a likelihood matching algorithm that is resilient to catastrophic forgetting and is completely online.
arXiv Detail & Related papers (2021-02-07T14:19:07Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Fast Learning of Graph Neural Networks with Guaranteed Generalizability:
One-hidden-layer Case [93.37576644429578]
Graph neural networks (GNNs) have made great progress recently on learning from graph-structured data in practice.
We provide a theoretically-grounded generalizability analysis of GNNs with one hidden layer for both regression and binary classification problems.
arXiv Detail & Related papers (2020-06-25T00:45:52Z) - An Adversarial Approach for Explaining the Predictions of Deep Neural
Networks [9.645196221785694]
We present a novel algorithm for explaining the predictions of a deep neural network (DNN) using adversarial machine learning.
Our approach identifies the relative importance of input features in relation to the predictions based on the behavior of an adversarial attack on the DNN.
Our analysis enables us to produce consistent and efficient explanations.
arXiv Detail & Related papers (2020-05-20T18:06:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.