A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals
- URL: http://arxiv.org/abs/2308.07436v1
- Date: Mon, 14 Aug 2023 20:06:19 GMT
- Title: A Hybrid Deep Spatio-Temporal Attention-Based Model for Parkinson's
Disease Diagnosis Using Resting State EEG Signals
- Authors: Niloufar Delfan, Mohammadreza Shahsavari, Sadiq Hussain, Robertas
Dama\v{s}evi\v{c}ius, U. Rajendra Acharya
- Abstract summary: This study presents a deep learning-based model for the diagnosis of Parkinson's disease (PD) using resting state electroencephalogram (EEG) signal.
The model is designed using a hybrid model, consists of convolutional neural network (CNN), bidirectional gated recurrent unit (Bi-GRU) and attention mechanism.
The results show that the proposed model can accurately diagnose PD with high performance on both the training and hold-out datasets.
- Score: 8.526741765074677
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Parkinson's disease (PD), a severe and progressive neurological illness,
affects millions of individuals worldwide. For effective treatment and
management of PD, an accurate and early diagnosis is crucial. This study
presents a deep learning-based model for the diagnosis of PD using resting
state electroencephalogram (EEG) signal. The objective of the study is to
develop an automated model that can extract complex hidden nonlinear features
from EEG and demonstrate its generalizability on unseen data. The model is
designed using a hybrid model, consists of convolutional neural network (CNN),
bidirectional gated recurrent unit (Bi-GRU), and attention mechanism. The
proposed method is evaluated on three public datasets (Uc San Diego Dataset,
PRED-CT, and University of Iowa (UI) dataset), with one dataset used for
training and the other two for evaluation. The results show that the proposed
model can accurately diagnose PD with high performance on both the training and
hold-out datasets. The model also performs well even when some part of the
input information is missing. The results of this work have significant
implications for patient treatment and for ongoing investigations into the
early detection of Parkinson's disease. The suggested model holds promise as a
non-invasive and reliable technique for PD early detection utilizing resting
state EEG.
Related papers
- Explainable AI for Autism Diagnosis: Identifying Critical Brain Regions Using fMRI Data [0.29687381456163997]
Early diagnosis and intervention for Autism Spectrum Disorder (ASD) has been shown to significantly improve the quality of life of autistic individuals.
There is a need for objective biomarkers of ASD which can help improve diagnostic accuracy.
Deep learning (DL) has achieved outstanding performance in diagnosing diseases and conditions from medical imaging data.
This research aims to improve the accuracy and interpretability of ASD diagnosis by creating a DL model that can not only accurately classify ASD but also provide explainable insights into its working.
arXiv Detail & Related papers (2024-09-19T23:08:09Z) - Early Recognition of Parkinson's Disease Through Acoustic Analysis and Machine Learning [0.0]
Parkinson's Disease (PD) is a progressive neurodegenerative disorder that significantly impacts both motor and non-motor functions, including speech.
This paper provides a comprehensive review of methods for PD recognition using speech data, highlighting advances in machine learning and data-driven approaches.
Various classification algorithms are explored, including logistic regression, SVM, and neural networks, with and without feature selection.
Our findings indicate that specific acoustic features and advanced machine-learning techniques can effectively differentiate between individuals with PD and healthy controls.
arXiv Detail & Related papers (2024-07-22T23:24:02Z) - Synthesizing Multimodal Electronic Health Records via Predictive Diffusion Models [69.06149482021071]
We propose a novel EHR data generation model called EHRPD.
It is a diffusion-based model designed to predict the next visit based on the current one while also incorporating time interval estimation.
We conduct experiments on two public datasets and evaluate EHRPD from fidelity, privacy, and utility perspectives.
arXiv Detail & Related papers (2024-06-20T02:20:23Z) - 1D-Convolutional transformer for Parkinson disease diagnosis from gait [7.213855322671065]
This paper presents an efficient deep neural network model for diagnosing Parkinson's disease from gait.
We introduce a hybrid ConvNetTransform-er architecture to accurately diagnose the disease by detecting the severity stage.
Our experimental results show that our approach is effective for detecting the different stages of Parkinson's disease from gait data.
arXiv Detail & Related papers (2023-11-06T15:17:17Z) - Automatic diagnosis of knee osteoarthritis severity using Swin
transformer [55.01037422579516]
Knee osteoarthritis (KOA) is a widespread condition that can cause chronic pain and stiffness in the knee joint.
We propose an automated approach that employs the Swin Transformer to predict the severity of KOA.
arXiv Detail & Related papers (2023-07-10T09:49:30Z) - Textual Data Augmentation for Patient Outcomes Prediction [67.72545656557858]
We propose a novel data augmentation method to generate artificial clinical notes in patients' Electronic Health Records.
We fine-tune the generative language model GPT-2 to synthesize labeled text with the original training data.
We evaluate our method on the most common patient outcome, i.e., the 30-day readmission rate.
arXiv Detail & Related papers (2022-11-13T01:07:23Z) - Feature robustness and sex differences in medical imaging: a case study
in MRI-based Alzheimer's disease detection [1.7616042687330637]
We compare two classification schemes on the ADNI MRI dataset.
We do not find a strong dependence of model performance for male and female test subjects on the sex composition of the training dataset.
arXiv Detail & Related papers (2022-04-04T17:37:54Z) - UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced
Data [81.00385374948125]
We present UNcertaInTy-based hEalth risk prediction (UNITE) model.
UNITE provides accurate disease risk prediction and uncertainty estimation leveraging multi-sourced health data.
We evaluate UNITE on real-world disease risk prediction tasks: nonalcoholic fatty liver disease (NASH) and Alzheimer's disease (AD)
UNITE achieves up to 0.841 in F1 score for AD detection, up to 0.609 in PR-AUC for NASH detection, and outperforms various state-of-the-art baselines by up to $19%$ over the best baseline.
arXiv Detail & Related papers (2020-10-22T02:28:11Z) - Bidirectional Representation Learning from Transformers using Multimodal
Electronic Health Record Data to Predict Depression [11.1492931066686]
We present a temporal deep learning model to perform bidirectional representation learning on EHR sequences to predict depression.
The model generated the highest increases of precision-recall area under the curve (PRAUC) from 0.70 to 0.76 in depression prediction compared to the best baseline model.
arXiv Detail & Related papers (2020-09-26T17:56:37Z) - Learning-based Computer-aided Prescription Model for Parkinson's
Disease: A Data-driven Perspective [61.70045118068213]
We build a dataset by collecting symptoms of PD patients, and their prescription drug provided by neurologists.
Then, we build a novel computer-aided prescription model by learning the relation between observed symptoms and prescription drug.
For the new coming patients, we could recommend (predict) suitable prescription drug on their observed symptoms by our prescription model.
arXiv Detail & Related papers (2020-07-31T14:34:35Z) - Hemogram Data as a Tool for Decision-making in COVID-19 Management:
Applications to Resource Scarcity Scenarios [62.997667081978825]
COVID-19 pandemics has challenged emergency response systems worldwide, with widespread reports of essential services breakdown and collapse of health care structure.
This work describes a machine learning model derived from hemogram exam data performed in symptomatic patients.
Proposed models can predict COVID-19 qRT-PCR results in symptomatic individuals with high accuracy, sensitivity and specificity.
arXiv Detail & Related papers (2020-05-10T01:45:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.