Deep Reinforcement Learning Based Mobile Edge Computing for Intelligent
Internet of Things
- URL: http://arxiv.org/abs/2008.00250v1
- Date: Sat, 1 Aug 2020 11:45:54 GMT
- Title: Deep Reinforcement Learning Based Mobile Edge Computing for Intelligent
Internet of Things
- Authors: Rui Zhao, Xinjie Wang, Junjuan Xia, and Liseng Fan
- Abstract summary: We devise the system by proposing the offloading strategy intelligently through the deep reinforcement learning algorithm.
Deep Q-Network is used to automatically learn the offloading decision in order to optimize the system performance.
A neural network (NN) is trained to predict the offloading action, where the training data is generated from the environmental system.
In particular, the system cost of latency and energy consumption can be reduced significantly by the proposed deep reinforcement learning based algorithm.
- Score: 10.157016543999045
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate mobile edge computing (MEC) networks for
intelligent internet of things (IoT), where multiple users have some
computational tasks assisted by multiple computational access points (CAPs). By
offloading some tasks to the CAPs, the system performance can be improved
through reducing the latency and energy consumption, which are the two
important metrics of interest in the MEC networks. We devise the system by
proposing the offloading strategy intelligently through the deep reinforcement
learning algorithm. In this algorithm, Deep Q-Network is used to automatically
learn the offloading decision in order to optimize the system performance, and
a neural network (NN) is trained to predict the offloading action, where the
training data is generated from the environmental system. Moreover, we employ
the bandwidth allocation in order to optimize the wireless spectrum for the
links between the users and CAPs, where several bandwidth allocation schemes
are proposed. In further, we use the CAP selection in order to choose one best
CAP to assist the computational tasks from the users. Simulation results are
finally presented to show the effectiveness of the proposed reinforcement
learning offloading strategy. In particular, the system cost of latency and
energy consumption can be reduced significantly by the proposed deep
reinforcement learning based algorithm.
Related papers
- Energy-Efficient Federated Edge Learning with Streaming Data: A Lyapunov Optimization Approach [34.00679567444125]
We develop a dynamic scheduling and resource allocation algorithm to address the inherent randomness in data arrivals and resource availability under long-term energy constraints.
Our proposed algorithm makes adaptive decisions on device scheduling, computational capacity adjustment, and allocation of bandwidth and transmit power in every round.
The effectiveness of our scheme is verified through simulation results, demonstrating improved learning performance and energy efficiency as compared to baseline schemes.
arXiv Detail & Related papers (2024-05-20T14:13:22Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Towards Scalable Wireless Federated Learning: Challenges and Solutions [40.68297639420033]
federated learning (FL) emerges as an effective distributed machine learning framework.
We discuss the challenges and solutions of achieving scalable wireless FL from the perspectives of both network design and resource orchestration.
arXiv Detail & Related papers (2023-10-08T08:55:03Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
We propose a multi-head ensemble multi-task learning (MEMTL) approach with a shared backbone and multiple prediction heads (PHs)
MEMTL outperforms benchmark methods in both the inference accuracy and mean square error without requiring additional training data.
arXiv Detail & Related papers (2023-09-02T11:01:16Z) - Online Network Source Optimization with Graph-Kernel MAB [62.6067511147939]
We propose Grab-UCB, a graph- kernel multi-arms bandit algorithm to learn online the optimal source placement in large scale networks.
We describe the network processes with an adaptive graph dictionary model, which typically leads to sparse spectral representations.
We derive the performance guarantees that depend on network parameters, which further influence the learning curve of the sequential decision strategy.
arXiv Detail & Related papers (2023-07-07T15:03:42Z) - Computation Offloading and Resource Allocation in F-RANs: A Federated
Deep Reinforcement Learning Approach [67.06539298956854]
fog radio access network (F-RAN) is a promising technology in which the user mobile devices (MDs) can offload computation tasks to the nearby fog access points (F-APs)
arXiv Detail & Related papers (2022-06-13T02:19:20Z) - Online Learning for Orchestration of Inference in Multi-User
End-Edge-Cloud Networks [3.6076391721440633]
Collaborative end-edge-cloud computing for deep learning provides a range of performance and efficiency.
We propose a reinforcement-learning-based computation offloading solution that learns optimal offloading policy.
Our solution provides 35% speedup in the average response time compared to the state-of-the-art with less than 0.9% accuracy reduction.
arXiv Detail & Related papers (2022-02-21T21:41:29Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Edge Intelligence for Energy-efficient Computation Offloading and
Resource Allocation in 5G Beyond [7.953533529450216]
5G beyond is an end-edge-cloud orchestrated network that can exploit heterogeneous capabilities of the end devices, edge servers, and the cloud.
In multi user wireless networks, diverse application requirements and the possibility of various radio access modes for communication among devices make it challenging to design an optimal computation offloading scheme.
Deep Reinforcement Learning (DRL) is an emerging technique to address such an issue with limited and less accurate network information.
arXiv Detail & Related papers (2020-11-17T05:51:03Z) - A Machine Learning Approach for Task and Resource Allocation in Mobile
Edge Computing Based Networks [108.57859531628264]
A joint task, spectrum, and transmit power allocation problem is investigated for a wireless network.
The proposed algorithm can reduce the number of iterations needed for convergence and the maximal delay among all users by up to 18% and 11.1% compared to the standard Q-learning algorithm.
arXiv Detail & Related papers (2020-07-20T13:46:42Z) - Multi-agent Reinforcement Learning for Resource Allocation in IoT
networks with Edge Computing [16.129649374251088]
It's challenging for end users to offload computation due to their massive requirements on spectrum and resources.
In this paper, we investigate offloading mechanism with resource allocation in IoT edge computing networks by formulating it as a game.
arXiv Detail & Related papers (2020-04-05T20:59:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.