A Survey on Multi-Objective based Parameter Optimization for Deep
Learning
- URL: http://arxiv.org/abs/2305.10014v1
- Date: Wed, 17 May 2023 07:48:54 GMT
- Title: A Survey on Multi-Objective based Parameter Optimization for Deep
Learning
- Authors: Mrittika Chakraborty (1), Wreetbhas Pal (1), Sanghamitra Bandyopadhyay
(2) and Ujjwal Maulik (1) ((1) Jadavpur University, (2) Indian Statistical
Institute)
- Abstract summary: We focus on exploring the effectiveness of multi-objective optimization strategies for parameter optimization in conjunction with deep neural networks.
The two methods are combined to provide valuable insights into the generation of predictions and analysis in multiple applications.
- Score: 1.3223682837381137
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models form one of the most powerful machine learning models
for the extraction of important features. Most of the designs of deep neural
models, i.e., the initialization of parameters, are still manually tuned.
Hence, obtaining a model with high performance is exceedingly time-consuming
and occasionally impossible. Optimizing the parameters of the deep networks,
therefore, requires improved optimization algorithms with high convergence
rates. The single objective-based optimization methods generally used are
mostly time-consuming and do not guarantee optimum performance in all cases.
Mathematical optimization problems containing multiple objective functions that
must be optimized simultaneously fall under the category of multi-objective
optimization sometimes referred to as Pareto optimization. Multi-objective
optimization problems form one of the alternatives yet useful options for
parameter optimization. However, this domain is a bit less explored. In this
survey, we focus on exploring the effectiveness of multi-objective optimization
strategies for parameter optimization in conjunction with deep neural networks.
The case studies used in this study focus on how the two methods are combined
to provide valuable insights into the generation of predictions and analysis in
multiple applications.
Related papers
- Trajectory-Based Multi-Objective Hyperparameter Optimization for Model Retraining [8.598456741786801]
We present a novel trajectory-based multi-objective Bayesian optimization algorithm.
Our algorithm outperforms the state-of-the-art multi-objectives in both locating better trade-offs and tuning efficiency.
arXiv Detail & Related papers (2024-05-24T07:43:45Z) - End-to-End Learning for Fair Multiobjective Optimization Under
Uncertainty [55.04219793298687]
The Predict-Then-Forecast (PtO) paradigm in machine learning aims to maximize downstream decision quality.
This paper extends the PtO methodology to optimization problems with nondifferentiable Ordered Weighted Averaging (OWA) objectives.
It shows how optimization of OWA functions can be effectively integrated with parametric prediction for fair and robust optimization under uncertainty.
arXiv Detail & Related papers (2024-02-12T16:33:35Z) - Evolutionary Solution Adaption for Multi-Objective Metal Cutting Process
Optimization [59.45414406974091]
We introduce a framework for system flexibility that allows us to study the ability of an algorithm to transfer solutions from previous optimization tasks.
We study the flexibility of NSGA-II, which we extend by two variants: 1) varying goals, that optimize solutions for two tasks simultaneously to obtain in-between source solutions expected to be more adaptable, and 2) active-inactive genotype, that accommodates different possibilities that can be activated or deactivated.
Results show that adaption with standard NSGA-II greatly reduces the number of evaluations required for optimization to a target goal, while the proposed variants further improve the adaption costs.
arXiv Detail & Related papers (2023-05-31T12:07:50Z) - Agent-based Collaborative Random Search for Hyper-parameter Tuning and
Global Function Optimization [0.0]
This paper proposes an agent-based collaborative technique for finding near-optimal values for any arbitrary set of hyper- parameters in a machine learning model.
The behavior of the presented model, specifically against the changes in its design parameters, is investigated in both machine learning and global function optimization applications.
arXiv Detail & Related papers (2023-03-03T21:10:17Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z) - Multi-Objective Hyperparameter Optimization in Machine Learning -- An Overview [10.081056751778712]
We introduce the basics of multi-objective hyperparameter optimization and motivate its usefulness in applied ML.
We provide an extensive survey of existing optimization strategies, both from the domain of evolutionary algorithms and Bayesian optimization.
We illustrate the utility of MOO in several specific ML applications, considering objectives such as operating conditions, prediction time, sparseness, fairness, interpretability and robustness.
arXiv Detail & Related papers (2022-06-15T10:23:19Z) - Teaching Networks to Solve Optimization Problems [13.803078209630444]
We propose to replace the iterative solvers altogether with a trainable parametric set function.
We show the feasibility of learning such parametric (set) functions to solve various classic optimization problems.
arXiv Detail & Related papers (2022-02-08T19:13:13Z) - Batched Data-Driven Evolutionary Multi-Objective Optimization Based on
Manifold Interpolation [6.560512252982714]
We propose a framework for implementing batched data-driven evolutionary multi-objective optimization.
It is so general that any off-the-shelf evolutionary multi-objective optimization algorithms can be applied in a plug-in manner.
Our proposed framework is featured with a faster convergence and a stronger resilience to various PF shapes.
arXiv Detail & Related papers (2021-09-12T23:54:26Z) - Bayesian Optimization for Selecting Efficient Machine Learning Models [53.202224677485525]
We present a unified Bayesian Optimization framework for jointly optimizing models for both prediction effectiveness and training efficiency.
Experiments on model selection for recommendation tasks indicate models selected this way significantly improves model training efficiency.
arXiv Detail & Related papers (2020-08-02T02:56:30Z) - Automatically Learning Compact Quality-aware Surrogates for Optimization
Problems [55.94450542785096]
Solving optimization problems with unknown parameters requires learning a predictive model to predict the values of the unknown parameters and then solving the problem using these values.
Recent work has shown that including the optimization problem as a layer in a complex training model pipeline results in predictions of iteration of unobserved decision making.
We show that we can improve solution quality by learning a low-dimensional surrogate model of a large optimization problem.
arXiv Detail & Related papers (2020-06-18T19:11:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.