論文の概要: Evolving Multi-Resolution Pooling CNN for Monaural Singing Voice
Separation
- arxiv url: http://arxiv.org/abs/2008.00816v1
- Date: Mon, 3 Aug 2020 12:09:42 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 07:23:51.288516
- Title: Evolving Multi-Resolution Pooling CNN for Monaural Singing Voice
Separation
- Title(参考訳): モノーラル歌声分離のためのマルチレゾリューションプールcnnの進化
- Authors: Weitao Yuan, Bofei Dong, Shengbei Wang, Masashi Unoki, and Wenwu Wang
- Abstract要約: モナウラル歌声分離(MSVS)は難しい課題であり、何十年も研究されてきた。
ディープニューラルネットワーク(Deep Neural Network, DNN)は、MSVSの最先端の手法である。
ニューラルアーキテクチャサーチ(NAS)手法をMSVS用DNNの構造設計に適用する。
- 参考スコア(独自算出の注目度): 40.170868770930774
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Monaural Singing Voice Separation (MSVS) is a challenging task and has been
studied for decades. Deep neural networks (DNNs) are the current
state-of-the-art methods for MSVS. However, the existing DNNs are often
designed manually, which is time-consuming and error-prone. In addition, the
network architectures are usually pre-defined, and not adapted to the training
data. To address these issues, we introduce a Neural Architecture Search (NAS)
method to the structure design of DNNs for MSVS. Specifically, we propose a new
multi-resolution Convolutional Neural Network (CNN) framework for MSVS namely
Multi-Resolution Pooling CNN (MRP-CNN), which uses various-size pooling
operators to extract multi-resolution features. Based on the NAS, we then
develop an evolving framework namely Evolving MRP-CNN (E-MRP-CNN), by
automatically searching the effective MRP-CNN structures using genetic
algorithms, optimized in terms of a single-objective considering only
separation performance, or multi-objective considering both the separation
performance and the model complexity. The multi-objective E-MRP-CNN gives a set
of Pareto-optimal solutions, each providing a trade-off between separation
performance and model complexity. Quantitative and qualitative evaluations on
the MIR-1K and DSD100 datasets are used to demonstrate the advantages of the
proposed framework over several recent baselines.
- Abstract(参考訳): モナウラル歌声分離(MSVS)は難しい課題であり、何十年も研究されてきた。
ディープニューラルネットワーク(DNN)はMSVSの最先端の手法である。
しかし、既存のDNNは手動で設計されることが多い。
加えて、ネットワークアーキテクチャは通常事前定義され、トレーニングデータに適合しない。
これらの問題に対処するため,MSVS用DNNの構造設計にニューラルアーキテクチャサーチ(NAS)手法を導入する。
具体的には,マルチレゾリューションプーリングcnn(mrp-cnn)という,マルチレゾリューションプーリング演算子を用いてマルチレゾリューション機能を抽出したmsvsのための,新しいマルチレゾリューション畳み込みニューラルネットワーク(cnn)フレームワークを提案する。
NASに基づいて、遺伝的アルゴリズムを用いて有効なMPP-CNN構造を自動探索し、分離性能のみを考慮した単目的、分離性能とモデル複雑さの両方を考慮した多目的という観点から最適化し、進化するMRP-CNN(Evolving MRP-CNN)を開発する。
多目的E-MRP-CNNはパレート最適化ソリューションのセットを提供し、それぞれが分離性能とモデル複雑性のトレードオフを提供する。
MIR-1KとDSD100データセットの定量的および定性的な評価は、提案フレームワークのいくつかの最近のベースラインに対する利点を示すために用いられる。
関連論文リスト
- Multiway Multislice PHATE: Visualizing Hidden Dynamics of RNNs through Training [6.326396282553267]
リカレントニューラルネットワーク(Recurrent Neural Network, RNN)は、シーケンシャルなデータ分析に広く使われているツールであるが、計算のブラックボックスとしてよく見られる。
本稿では,RNNの隠れ状態の進化を可視化する新しい手法であるMultiway Multislice PHATE(MM-PHATE)を提案する。
論文 参考訳(メタデータ) (2024-06-04T05:05:27Z) - Multi-Objective Evolutionary Neural Architecture Search for Recurrent Neural Networks [0.0]
本稿では,多目的進化アルゴリズムに基づくRNNアーキテクチャ探索手法を提案する。
提案手法は,進化過程におけるRNNアーキテクチャの複雑性最適化のための近似ネットワーク型に依存する。
論文 参考訳(メタデータ) (2024-03-17T11:19:45Z) - SICNN: Soft Interference Cancellation Inspired Neural Network Equalizers [1.6451639748812472]
我々はSICNNと呼ばれる新しいニューラルネットワーク(NN)ベースのアプローチを提案する。
SICNNはモデルに基づく反復型ソフト干渉キャンセル(SIC)法を深く展開して設計されている。
提案したNNベースの等化器のビット誤り率性能と最先端のモデルベースおよびNNベースのアプローチとの比較を行った。
論文 参考訳(メタデータ) (2023-08-24T06:40:54Z) - Disentangling Structured Components: Towards Adaptive, Interpretable and
Scalable Time Series Forecasting [52.47493322446537]
本研究では,時空間パターンの各コンポーネントを個別にモデル化する適応的,解釈可能,スケーラブルな予測フレームワークを開発する。
SCNNは、空間時間パターンの潜在構造を算術的に特徴づける、MSSの事前定義された生成プロセスで動作する。
SCNNが3つの実世界のデータセットの最先端モデルよりも優れた性能を達成できることを示すため、大規模な実験が行われた。
論文 参考訳(メタデータ) (2023-05-22T13:39:44Z) - Multi-scale Evolutionary Neural Architecture Search for Deep Spiking
Neural Networks [7.271032282434803]
スパイキングニューラルネットワーク(SNN)のためのマルチスケール進化型ニューラルネットワーク探索(MSE-NAS)を提案する。
MSE-NASは脳にインスパイアされた間接的評価機能であるRepresentational Dissimilarity Matrices(RDMs)を介して、個々のニューロンの操作、複数の回路モチーフの自己組織化の統合、およびグローバルなモチーフ間の接続を進化させる
提案アルゴリズムは,静的データセットとニューロモルフィックデータセットのシミュレーションステップを短縮して,最先端(SOTA)性能を実現する。
論文 参考訳(メタデータ) (2023-04-21T05:36:37Z) - Split-Et-Impera: A Framework for the Design of Distributed Deep Learning
Applications [8.434224141580758]
Split-Et-Imperaは、ディープネットワークの解釈可能性の原則に基づいて、ニューラルネットワークのベストスプリットポイントのセットを決定する。
異なるニューラルネットワーク再構成の迅速な評価のための通信認識シミュレーションを実行する。
これは、アプリケーションのサービス要件の品質と、正確性とレイテンシ時間の観点からのパフォーマンスのベストマッチを示唆している。
論文 参考訳(メタデータ) (2023-03-22T13:00:00Z) - Batch-Ensemble Stochastic Neural Networks for Out-of-Distribution
Detection [55.028065567756066]
Out-of-Distribution(OOD)検出は、機械学習モデルを現実世界のアプリケーションにデプロイすることの重要性から、マシンラーニングコミュニティから注目を集めている。
本稿では,特徴量の分布をモデル化した不確実な定量化手法を提案する。
バッチアンサンブルニューラルネットワーク(BE-SNN)の構築と機能崩壊問題の克服を目的として,効率的なアンサンブル機構,すなわちバッチアンサンブルを組み込んだ。
We show that BE-SNNs yield superior performance on the Two-Moons dataset, the FashionMNIST vs MNIST dataset, FashionM。
論文 参考訳(メタデータ) (2022-06-26T16:00:22Z) - Towards a General Purpose CNN for Long Range Dependencies in
$\mathrm{N}$D [49.57261544331683]
構造変化のない任意の解像度,次元,長さのタスクに対して,連続的な畳み込みカーネルを備えた単一CNNアーキテクチャを提案する。
1$mathrmD$)とビジュアルデータ(2$mathrmD$)の幅広いタスクに同じCCNNを適用することで、我々のアプローチの汎用性を示す。
私たちのCCNNは競争力があり、検討されたすべてのタスクで現在の最先端を上回ります。
論文 参考訳(メタデータ) (2022-06-07T15:48:02Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Multi-Tones' Phase Coding (MTPC) of Interaural Time Difference by
Spiking Neural Network [68.43026108936029]
雑音の多い実環境下での正確な音像定位のための純粋スパイクニューラルネットワーク(SNN)に基づく計算モデルを提案する。
このアルゴリズムを,マイクロホンアレイを用いたリアルタイムロボットシステムに実装する。
実験の結果, 平均誤差方位は13度であり, 音源定位に対する他の生物学的に妥当なニューロモルフィックアプローチの精度を上回っていることがわかった。
論文 参考訳(メタデータ) (2020-07-07T08:22:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。