論文の概要: Split-Et-Impera: A Framework for the Design of Distributed Deep Learning
Applications
- arxiv url: http://arxiv.org/abs/2303.12524v1
- Date: Wed, 22 Mar 2023 13:00:00 GMT
- ステータス: 処理完了
- システム内更新日: 2023-03-23 14:16:35.459398
- Title: Split-Et-Impera: A Framework for the Design of Distributed Deep Learning
Applications
- Title(参考訳): Split-Et-Impera: 分散ディープラーニングアプリケーション設計のためのフレームワーク
- Authors: Luigi Capogrosso, Federico Cunico, Michele Lora, Marco Cristani,
Franco Fummi, Davide Quaglia
- Abstract要約: Split-Et-Imperaは、ディープネットワークの解釈可能性の原則に基づいて、ニューラルネットワークのベストスプリットポイントのセットを決定する。
異なるニューラルネットワーク再構成の迅速な評価のための通信認識シミュレーションを実行する。
これは、アプリケーションのサービス要件の品質と、正確性とレイテンシ時間の観点からのパフォーマンスのベストマッチを示唆している。
- 参考スコア(独自算出の注目度): 8.434224141580758
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recent pattern recognition applications rely on complex distributed
architectures in which sensing and computational nodes interact together
through a communication network. Deep neural networks (DNNs) play an important
role in this scenario, furnishing powerful decision mechanisms, at the price of
a high computational effort. Consequently, powerful state-of-the-art DNNs are
frequently split over various computational nodes, e.g., a first part stays on
an embedded device and the rest on a server. Deciding where to split a DNN is a
challenge in itself, making the design of deep learning applications even more
complicated. Therefore, we propose Split-Et-Impera, a novel and practical
framework that i) determines the set of the best-split points of a neural
network based on deep network interpretability principles without performing a
tedious try-and-test approach, ii) performs a communication-aware simulation
for the rapid evaluation of different neural network rearrangements, and iii)
suggests the best match between the quality of service requirements of the
application and the performance in terms of accuracy and latency time.
- Abstract(参考訳): 最近のパターン認識アプリケーションは、センシングと計算ノードが通信ネットワークを介して相互に相互作用する複雑な分散アーキテクチャに依存している。
ディープニューラルネットワーク(DNN)はこのシナリオにおいて重要な役割を果たす。
その結果、強力な最先端DNNは様々な計算ノードに分割されることが多く、例えば、最初の部分は組み込みデバイスに留まり、残りはサーバに留まる。
DNNをどこで分割するかを決めることは、それ自体が課題であり、ディープラーニングアプリケーションの設計をさらに複雑にする。
そこで本稿では,新しい実践的枠組みであるsplit-et-imperaを提案する。
一 退屈な試行錯誤を行うことなく、ディープネットワークの解釈可能性原則に基づいてニューラルネットワークの最良の分割点の集合を決定すること。
二 異なるニューラルネットワークの再配置の迅速評価のための通信対応シミュレーションを行うこと。
iii) 正確性と待ち時間の観点から、アプリケーションのサービス要求の品質とパフォーマンスの最適な一致を示唆する。
関連論文リスト
- Accelerating Split Federated Learning over Wireless Communication
Networks [17.97006656280742]
我々は、連立学習(FL)の並列モデル学習機構と分割学習(SL)のモデル分割構造を組み合わせた分割学習(SFL)フレームワークを検討する。
システム遅延を最小限に抑えるために,分割点選択と帯域割り当ての連立問題を定式化する。
実験の結果,レイテンシ低減と精度向上における作業の優位性を実証した。
論文 参考訳(メタデータ) (2023-10-24T07:49:56Z) - Neural Network with Local Converging Input (NNLCI) for Supersonic Flow
Problems with Unstructured Grids [0.9152133607343995]
非構造データを用いた高忠実度予測のための局所収束入力(NNLCI)を用いたニューラルネットワークを開発した。
また, NNLCI法を用いて, バンプを有するチャネル内の超音速流の可視化を行った。
論文 参考訳(メタデータ) (2023-10-23T19:03:37Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
スパイキングニューラルネットワーク(SNN)は、エネルギー消費と遅延の観点から、桁違いに改善されている。
我々は、カスタムSNN PythonパッケージsnnTorchのIPU最適化リリースを提示する。
論文 参考訳(メタデータ) (2022-11-19T15:44:08Z) - Neural Architecture Search for Improving Latency-Accuracy Trade-off in
Split Computing [5.516431145236317]
スプリットコンピューティングは、IoTシステムにディープラーニングをデプロイする際のプライバシとレイテンシの問題に対処する、新たな機械学習推論技術である。
スプリットコンピューティングでは、ニューラルネットワークモデルは、エッジサーバとIoTデバイスをネットワークを介して分離し、協調的に処理される。
本稿ではスプリットコンピューティングのためのニューラルアーキテクチャサーチ(NAS)手法を提案する。
論文 参考訳(メタデータ) (2022-08-30T03:15:43Z) - An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic [72.35307086274912]
高次元パラメータモデルと大規模数学的計算は、特にIoT(Internet of Things)デバイスにおける実行効率を制限する。
本稿では,ソフトポリシーの繰り返しによるエフェキシット点,エフェキシット点,エンフェキシット点を生成する離散的(SAC-d)のための新しい深層強化学習(DRL)-ソフトアクタ批判法を提案する。
レイテンシと精度を意識した報酬設計に基づいて、そのような計算は動的無線チャンネルや任意の処理のような複雑な環境によく適応でき、5G URLをサポートすることができる。
論文 参考訳(メタデータ) (2022-01-09T09:31:50Z) - Hybrid SNN-ANN: Energy-Efficient Classification and Object Detection for
Event-Based Vision [64.71260357476602]
イベントベースの視覚センサは、画像フレームではなく、イベントストリームの局所的な画素単位の明るさ変化を符号化する。
イベントベースセンサーによる物体認識の最近の進歩は、ディープニューラルネットワークの変換によるものである。
本稿では、イベントベースのパターン認識とオブジェクト検出のためのディープニューラルネットワークのエンドツーエンドトレーニングのためのハイブリッドアーキテクチャを提案する。
論文 参考訳(メタデータ) (2021-12-06T23:45:58Z) - JMSNAS: Joint Model Split and Neural Architecture Search for Learning
over Mobile Edge Networks [23.230079759174902]
モバイルエッジネットワーク上でのDNNモデルの自動生成とデプロイのために,ジョイントモデル分割とニューラルアーキテクチャサーチ(JMSNAS)フレームワークを提案する。
計算資源制約と通信資源制約の両方を考慮すると、計算グラフ探索問題を定式化する。
実験により,最先端の分割機械学習設計手法よりも提案手法が優れていることを確認した。
論文 参考訳(メタデータ) (2021-11-16T03:10:23Z) - Real-time Multi-Task Diffractive Deep Neural Networks via
Hardware-Software Co-design [1.6066483376871004]
本研究は,d$2$nnsでロバストかつノイズ耐性のあるマルチタスク学習を実現する,新しいハードウェアソフトウェア共同設計手法を提案する。
私たちの実験結果は、汎用性とハードウェア効率の大幅な改善を示し、提案されたマルチタスクD$2$NNアーキテクチャの堅牢性を実証します。
論文 参考訳(メタデータ) (2020-12-16T12:29:54Z) - Deep Multi-Task Learning for Cooperative NOMA: System Design and
Principles [52.79089414630366]
我々は,近年のディープラーニング(DL)の進歩を反映した,新しいディープ・コラボレーティブなNOMAスキームを開発する。
我々は,システム全体を包括的に最適化できるように,新しいハイブリッドカスケードディープニューラルネットワーク(DNN)アーキテクチャを開発した。
論文 参考訳(メタデータ) (2020-07-27T12:38:37Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
TDNN(State-of-the-the-art Factored Time delay Neural Network)の2種類のハイパーパラメータを自動的に学習するために、さまざまなニューラルネットワークサーチ(NAS)技術が使用されている。
DARTSメソッドはアーキテクチャ選択とLF-MMI(格子のないMMI)TDNNトレーニングを統合する。
300時間のSwitchboardコーパスで行われた実験では、自動構成システムはベースラインLF-MMI TDNNシステムより一貫して優れていることが示唆された。
論文 参考訳(メタデータ) (2020-07-17T08:32:11Z) - Progressive Tandem Learning for Pattern Recognition with Deep Spiking
Neural Networks [80.15411508088522]
スパイキングニューラルネットワーク(SNN)は、低レイテンシと高い計算効率のために、従来の人工知能ニューラルネットワーク(ANN)よりも優位性を示している。
高速かつ効率的なパターン認識のための新しいANN-to-SNN変換およびレイヤワイズ学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-02T15:38:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。