FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN)
based Ball-Bearing Failure Detection Method
- URL: http://arxiv.org/abs/2008.00930v1
- Date: Thu, 30 Jul 2020 06:37:53 GMT
- Title: FaultFace: Deep Convolutional Generative Adversarial Network (DCGAN)
based Ball-Bearing Failure Detection Method
- Authors: Jairo Viola, YangQuan Chen and Jing Wang
- Abstract summary: This paper proposes a methodology called FaultFace for failure detection on Ball-Bearing joints for rotational shafts.
Deep Convolutional Generative Adversarial Network is employed to produce new faceportraits of the nominal and failure behaviors to get a balanced dataset.
- Score: 4.543665832042712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Failure detection is employed in the industry to improve system performance
and reduce costs due to unexpected malfunction events. So, a good dataset of
the system is desirable for designing an automated failure detection system.
However, industrial process datasets are unbalanced and contain little
information about failure behavior due to the uniqueness of these events and
the high cost for running the system just to get information about the
undesired behaviors. For this reason, performing correct training and
validation of automated failure detection methods is challenging. This paper
proposes a methodology called FaultFace for failure detection on Ball-Bearing
joints for rotational shafts using deep learning techniques to create balanced
datasets. The FaultFace methodology uses 2D representations of vibration
signals denominated faceportraits obtained by time-frequency transformation
techniques. From the obtained faceportraits, a Deep Convolutional Generative
Adversarial Network is employed to produce new faceportraits of the nominal and
failure behaviors to get a balanced dataset. A Convolutional Neural Network is
trained for fault detection employing the balanced dataset. The FaultFace
methodology is compared with other deep learning techniques to evaluate its
performance in for fault detection with unbalanced datasets. Obtained results
show that FaultFace methodology has a good performance for failure detection
for unbalanced datasets.
Related papers
- Leveraging Latent Diffusion Models for Training-Free In-Distribution Data Augmentation for Surface Defect Detection [9.784793380119806]
We introduce DIAG, a training-free Diffusion-based In-distribution Anomaly Generation pipeline for data augmentation.
Unlike conventional image generation techniques, we implement a human-in-the-loop pipeline, where domain experts provide multimodal guidance to the model.
We demonstrate the efficacy and versatility of DIAG with respect to state-of-the-art data augmentation approaches on the challenging KSDD2 dataset.
arXiv Detail & Related papers (2024-07-04T14:28:52Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - An Improved Anomaly Detection Model for Automated Inspection of Power Line Insulators [0.0]
Inspection of insulators is important to ensure reliable operation of the power system.
Deep learning is being increasingly exploited to automate the inspection process.
This article proposes the use of anomaly detection along with object detection in a two-stage approach for incipient fault detection.
arXiv Detail & Related papers (2023-11-14T11:36:20Z) - Self-Supervised Graph Transformer for Deepfake Detection [1.8133635752982105]
Deepfake detection methods have shown promising results in recognizing forgeries within a given dataset.
Deepfake detection system must remain impartial to forgery types, appearance, and quality for guaranteed generalizable detection performance.
This study introduces a deepfake detection framework, leveraging a self-supervised pre-training model that delivers exceptional generalization ability.
arXiv Detail & Related papers (2023-07-27T17:22:41Z) - Anomaly Detection with Ensemble of Encoder and Decoder [2.8199078343161266]
Anomaly detection in power grids aims to detect and discriminate anomalies caused by cyber attacks against the power system.
We propose a novel anomaly detection method by modeling the data distribution of normal samples via multiple encoders and decoders.
Experiment results on network intrusion and power system datasets demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2023-03-11T15:49:29Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
We propose PULL, an iterative log analysis method for reactive anomaly detection based on estimated failure time windows.
Our evaluation shows that PULL consistently outperforms ten benchmark baselines across three different datasets.
arXiv Detail & Related papers (2023-01-25T16:34:43Z) - An Outlier Exposure Approach to Improve Visual Anomaly Detection
Performance for Mobile Robots [76.36017224414523]
We consider the problem of building visual anomaly detection systems for mobile robots.
Standard anomaly detection models are trained using large datasets composed only of non-anomalous data.
We tackle the problem of exploiting these data to improve the performance of a Real-NVP anomaly detection model.
arXiv Detail & Related papers (2022-09-20T15:18:13Z) - Ranking-Based Physics-Informed Line Failure Detection in Power Grids [66.0797334582536]
Real-time and accurate detecting of potential line failures is the first step to mitigating the extreme weather impact and activating emergency controls.
Power balance equations nonlinearity, increased uncertainty in generation during extreme events, and lack of grid observability compromise the efficiency of traditional data-driven failure detection methods.
This paper proposes a Physics-InformEd Line failure Detector (FIELD) that leverages grid topology information to reduce sample and time complexities and improve localization accuracy.
arXiv Detail & Related papers (2022-08-31T18:19:25Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
Generative Adversarial Imputation Nets (GANs) and GAN-based techniques have attracted attention as unsupervised machine learning methods.
We name our proposed method as Con Conval Generative Adversarial Imputation Nets (Conv-GAIN)
arXiv Detail & Related papers (2021-11-03T03:50:48Z) - Continual Learning for Fake Audio Detection [62.54860236190694]
This paper proposes detecting fake without forgetting, a continual-learning-based method, to make the model learn new spoofing attacks incrementally.
Experiments are conducted on the ASVspoof 2019 dataset.
arXiv Detail & Related papers (2021-04-15T07:57:05Z) - Detection Method Based on Automatic Visual Shape Clustering for
Pin-Missing Defect in Transmission Lines [1.602803566465659]
Bolts are the most numerous fasteners in transmission lines and are prone to losing their split pins.
How to realize the automatic pin-missing defect detection for bolts in transmission lines so as to achieve timely and efficient trouble shooting is a difficult problem.
In this paper, an automatic detection model called Automatic Visual Shape Clustering Network (AVSCNet) for pin-missing defect is constructed.
arXiv Detail & Related papers (2020-01-17T10:57:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.