論文の概要: Analyzing Twitter Users' Behavior Before and After Contact by the
Internet Research Agency
- arxiv url: http://arxiv.org/abs/2008.01273v2
- Date: Mon, 15 Feb 2021 22:03:49 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-07 04:40:58.706566
- Title: Analyzing Twitter Users' Behavior Before and After Contact by the
Internet Research Agency
- Title(参考訳): インターネット研究機関の接触前後におけるtwitterユーザーの行動分析
- Authors: Upasana Dutta, Rhett Hanscom, Jason Shuo Zhang, Richard Han, Tamara
Lehman, Qin Lv, Shivakant Mishra
- Abstract要約: ロシアが支援するインターネット・リサーチ・エージェンシーは、2016年アメリカ合衆国大統領選挙前にTwitter上で拡散した誤報の主要な情報源として特定されている。
我々は、接触したユーザーの前後の行動を比較し、平均ツイート数、ツイートの感情、および@realDonaldTrumpや@HillaryClintonに言及したツイートの頻度と感情に違いがあるかどうかを判断した。
その結果,これらの指標のほとんどが統計学的に有意な行動変化を示しており,IRAに携わる利用者は概して行動変化が大きいことが示唆された。
- 参考スコア(独自算出の注目度): 0.771871917860264
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Social media platforms have been exploited to conduct election interference
in recent years. In particular, the Russian-backed Internet Research Agency
(IRA) has been identified as a key source of misinformation spread on Twitter
prior to the 2016 U.S. presidential election. The goal of this research is to
understand whether general Twitter users changed their behavior in the year
following first contact from an IRA account. We compare the before and after
behavior of contacted users to determine whether there were differences in
their mean tweet count, the sentiment of their tweets, and the frequency and
sentiment of tweets mentioning @realDonaldTrump or @HillaryClinton. Our results
indicate that users overall exhibited statistically significant changes in
behavior across most of these metrics, and that those users that engaged with
the IRA generally showed greater changes in behavior.
- Abstract(参考訳): 近年、ソーシャルメディアプラットフォームは選挙介入に利用されてきた。
特に、ロシアが支援するインターネットリサーチエージェンシー(IRA)は、2016年アメリカ合衆国大統領選挙前にTwitter上で拡散した誤報の重要な情報源として特定されている。
本研究の目的は、IRAアカウントから最初にコンタクトした翌年、一般のTwitterユーザーが行動を変えたかどうかを理解することである。
我々は、接触したユーザーの前後の行動を比較し、平均ツイート数、ツイートの感情、および@realDonaldTrumpや@HillaryClintonに言及したツイートの頻度と感情に違いがあるかどうかを判断した。
その結果,これらの指標のほとんどが統計学的に有意な行動変化を示しており,IRAに携わる利用者は概して行動変化が大きいことが示唆された。
関連論文リスト
- Design and analysis of tweet-based election models for the 2021 Mexican
legislative election [55.41644538483948]
選挙日前の6ヶ月の間に、1500万件の選挙関連ツイートのデータセットを使用します。
地理的属性を持つデータを用いたモデルが従来のポーリング法よりも精度と精度で選挙結果を決定することがわかった。
論文 参考訳(メタデータ) (2023-01-02T12:40:05Z) - Political Communities on Twitter: Case Study of the 2022 French
Presidential Election [14.783829037950984]
われわれは、2022年のフランス大統領選挙でTwitter上に形成された政治コミュニティを特定することを目指している。
われわれは、12万人のユーザーと6260万人のツイートを含む大規模なTwitterデータセットを作成し、選挙に関連するキーワードについて言及している。
ユーザのリツイートグラフ上でコミュニティ検出を行い、各コミュニティのスタンスを詳細に分析する。
論文 参考訳(メタデータ) (2022-04-15T12:18:16Z) - Manipulating Twitter Through Deletions [64.33261764633504]
Twitter上でのインフルエンスキャンペーンの研究は、公開APIを通じて得られたツイートから悪意のあるアクティビティを識別することに大きく依存している。
ここでは,1100万以上のアカウントによる10億以上の削除を含む,異常な削除パターンを網羅的かつ大規模に分析する。
少数のアカウントが毎日大量のツイートを削除していることがわかった。
まず、ツイートのボリューム制限が回避され、特定のアカウントが毎日2600万以上のツイートをネットワークに流すことができる。
第二に、調整されたアカウントのネットワークは、繰り返しのいいね!や、最終的に削除されるコンテンツとは違って、ランキングアルゴリズムを操作できる。
論文 参考訳(メタデータ) (2022-03-25T20:07:08Z) - Negativity Spreads Faster: A Large-Scale Multilingual Twitter Analysis
on the Role of Sentiment in Political Communication [7.136205674624813]
本稿は、欧州3カ国の政治家のツイートを分析しようとするものである。
最先端の事前訓練言語モデルを利用することで、数十万のツイートに対して感情分析を行った。
我々の分析は、政治家の否定的なツイートが、特に最近の時代に広く広まっていることを示している。
論文 参考訳(メタデータ) (2022-02-01T13:25:19Z) - Sentiment Analysis and Sarcasm Detection of Indian General Election
Tweets [0.0]
ソーシャルメディアの利用は、今日のデジタル世界では史上最高水準まで増加している。
一般大衆の感情や意見を分析することは、政府とビジネス関係者の両方にとって非常に重要である。
本稿では,ロクサバ選挙中のインド国民の感情をTwitterデータを用いて分析することに取り組んでいる。
論文 参考訳(メタデータ) (2022-01-03T17:30:00Z) - Identification of Twitter Bots based on an Explainable ML Framework: the
US 2020 Elections Case Study [72.61531092316092]
本稿では,ラベル付きTwitterデータに基づくTwitterボット識別システムの設計に焦点をあてる。
Supervised Machine Learning (ML)フレームワークは、Extreme Gradient Boosting (XGBoost)アルゴリズムを用いて採用されている。
また、MLモデルの予測を説明するためにShapley Additive Explanations (SHAP)をデプロイした。
論文 参考訳(メタデータ) (2021-12-08T14:12:24Z) - Shifting Polarization and Twitter News Influencers between two U.S.
Presidential Elections [92.33485580547801]
我々は2016年米大統領選挙と2020年米大統領選挙の間の分極の変化を分析した。
トップインフルエンサーのほとんどが、両選挙の間にメディア組織に所属していた。
2020年のトップインフルエンサーの75%は2016年は存在しなかった。
論文 参考訳(メタデータ) (2021-11-03T20:08:54Z) - Analyzing Behavioral Changes of Twitter Users After Exposure to
Misinformation [1.8251012479962594]
一般のTwitterユーザーが誤報に晒された後に行動を変えたかどうかを理解することを目的としている。
露出したユーザーの行動前後を比較して、投稿したツイートの頻度に大きな変化があったかどうかを判断する。
また,潜在的に影響を受けやすい2つの特定のユーザグループ,マルチ露光と極端な変更グループの特徴についても検討した。
論文 参考訳(メタデータ) (2021-11-01T04:48:07Z) - Characterizing Online Engagement with Disinformation and Conspiracies in
the 2020 U.S. Presidential Election [9.63004143218094]
ソーシャルメディアの永続的な操作は、2020年のアメリカ合衆国大統領選挙に対する懸念を増している。
2億2200万の選挙関連ツイートのデータセットを分析し,信頼できない(あるいは陰謀的)クレームから事実を分離するために,検出モデルを適用した。
我々は、信頼できない、陰謀的なツイートと、QAnon陰謀グループとのアカウントのエンゲージメントを、政治的傾倒とツイートタイプによって特徴づける。
論文 参考訳(メタデータ) (2021-07-17T22:11:13Z) - News consumption and social media regulations policy [70.31753171707005]
我々は、ニュース消費とコンテンツ規制の間の相互作用を評価するために、反対のモデレーション手法であるTwitterとGabを強制した2つのソーシャルメディアを分析した。
以上の結果から,Twitterが追求するモデレーションの存在は,疑わしいコンテンツを著しく減少させることがわかった。
Gabに対する明確な規制の欠如は、ユーザが両方のタイプのコンテンツを扱う傾向を生じさせ、ディスカウント/エンドレスメントの振る舞いを考慮に入れた疑わしいコンテンツに対してわずかに好みを示す。
論文 参考訳(メタデータ) (2021-06-07T19:26:32Z) - Understanding the Hoarding Behaviors during the COVID-19 Pandemic using
Large Scale Social Media Data [77.34726150561087]
われわれは、2020年3月1日から4月30日まで、米国で4万2000人以上のユニークTwitterユーザーによる嫌がらせと反嫌悪のパターンを分析した。
ホアーディンググループと反ホアーディンググループの両方の女性の比率が、一般のTwitter利用者の比率よりも高いことがわかりました。
LIWCの不安度はTwitterの不安度よりもかなり高い。
論文 参考訳(メタデータ) (2020-10-15T16:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。