Deep Parallel MRI Reconstruction Network Without Coil Sensitivities
- URL: http://arxiv.org/abs/2008.01410v3
- Date: Tue, 18 Aug 2020 15:03:33 GMT
- Title: Deep Parallel MRI Reconstruction Network Without Coil Sensitivities
- Authors: Wanyu Bian, Yunmei Chen, Xiaojing Ye
- Abstract summary: We propose a novel deep neural network architecture by mapping the robust proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI) with regularization function trained from data.
The proposed network learns to adaptively combine the multi-coil images from incomplete pMRI data into a single image with homogeneous contrast, which is then passed to a nonlinear encoder to efficiently extract sparse features of the image.
- Score: 4.559089047554929
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel deep neural network architecture by mapping the robust
proximal gradient scheme for fast image reconstruction in parallel MRI (pMRI)
with regularization function trained from data. The proposed network learns to
adaptively combine the multi-coil images from incomplete pMRI data into a
single image with homogeneous contrast, which is then passed to a nonlinear
encoder to efficiently extract sparse features of the image. Unlike most of
existing deep image reconstruction networks, our network does not require
knowledge of sensitivity maps, which can be difficult to estimate accurately,
and have been a major bottleneck of image reconstruction in real-world pMRI
applications. The experimental results demonstrate the promising performance of
our method on a variety of pMRI imaging data sets.
Related papers
- CMRxRecon: An open cardiac MRI dataset for the competition of
accelerated image reconstruction [62.61209705638161]
There has been growing interest in deep learning-based CMR imaging algorithms.
Deep learning methods require large training datasets.
This dataset includes multi-contrast, multi-view, multi-slice and multi-coil CMR imaging data from 300 subjects.
arXiv Detail & Related papers (2023-09-19T15:14:42Z) - Attention Hybrid Variational Net for Accelerated MRI Reconstruction [7.046523233290946]
The application of compressed sensing (CS)-enabled data reconstruction for accelerating magnetic resonance imaging (MRI) remains a challenging problem.
This is due to the fact that the information lost in k-space from the acceleration mask makes it difficult to reconstruct an image similar to the quality of a fully sampled image.
We propose a deep learning-based attention hybrid variational network that performs learning in both the k-space and image domain.
arXiv Detail & Related papers (2023-06-21T16:19:07Z) - Model-Guided Multi-Contrast Deep Unfolding Network for MRI
Super-resolution Reconstruction [68.80715727288514]
We show how to unfold an iterative MGDUN algorithm into a novel model-guided deep unfolding network by taking the MRI observation matrix.
In this paper, we propose a novel Model-Guided interpretable Deep Unfolding Network (MGDUN) for medical image SR reconstruction.
arXiv Detail & Related papers (2022-09-15T03:58:30Z) - ERNAS: An Evolutionary Neural Architecture Search for Magnetic Resonance
Image Reconstructions [0.688204255655161]
A popular approach to accelerated MRI is to undersample the k-space data.
While undersampling speeds up the scan procedure, it generates artifacts in the images, and advanced reconstruction algorithms are needed to produce artifact-free images.
In this work, MRI reconstruction from undersampled data was carried out using an optimized neural network using a novel evolutionary neural architecture search algorithm.
arXiv Detail & Related papers (2022-06-15T03:42:18Z) - Scale-Equivariant Unrolled Neural Networks for Data-Efficient
Accelerated MRI Reconstruction [33.82162420709648]
We propose modeling the proximal operators of unrolled neural networks with scale-equivariant convolutional neural networks.
Our approach demonstrates strong improvements over the state-of-the-art unrolled neural networks under the same memory constraints.
arXiv Detail & Related papers (2022-04-21T23:29:52Z) - Multi-modal Aggregation Network for Fast MR Imaging [85.25000133194762]
We propose a novel Multi-modal Aggregation Network, named MANet, which is capable of discovering complementary representations from a fully sampled auxiliary modality.
In our MANet, the representations from the fully sampled auxiliary and undersampled target modalities are learned independently through a specific network.
Our MANet follows a hybrid domain learning framework, which allows it to simultaneously recover the frequency signal in the $k$-space domain.
arXiv Detail & Related papers (2021-10-15T13:16:59Z) - Multi-Modal MRI Reconstruction with Spatial Alignment Network [51.74078260367654]
In clinical practice, magnetic resonance imaging (MRI) with multiple contrasts is usually acquired in a single study.
Recent researches demonstrate that, considering the redundancy between different contrasts or modalities, a target MRI modality under-sampled in the k-space can be better reconstructed with the helps from a fully-sampled sequence.
In this paper, we integrate the spatial alignment network with reconstruction, to improve the quality of the reconstructed target modality.
arXiv Detail & Related papers (2021-08-12T08:46:35Z) - Over-and-Under Complete Convolutional RNN for MRI Reconstruction [57.95363471940937]
Recent deep learning-based methods for MR image reconstruction usually leverage a generic auto-encoder architecture.
We propose an Over-and-Under Complete Convolu?tional Recurrent Neural Network (OUCR), which consists of an overcomplete and an undercomplete Convolutional Recurrent Neural Network(CRNN)
The proposed method achieves significant improvements over the compressed sensing and popular deep learning-based methods with less number of trainable parameters.
arXiv Detail & Related papers (2021-06-16T15:56:34Z) - Adaptive Gradient Balancing for UndersampledMRI Reconstruction and
Image-to-Image Translation [60.663499381212425]
We enhance the image quality by using a Wasserstein Generative Adversarial Network combined with a novel Adaptive Gradient Balancing technique.
In MRI, our method minimizes artifacts, while maintaining a high-quality reconstruction that produces sharper images than other techniques.
arXiv Detail & Related papers (2021-04-05T13:05:22Z) - ODE-based Deep Network for MRI Reconstruction [1.569044447685249]
We propose an ODE-based deep network for MRI reconstruction to enable the rapid acquisition of MR images with improved image quality.
Our results with undersampled data demonstrate that our method can deliver higher quality images in comparison to the reconstruction methods based on the standard UNet network and Residual network.
arXiv Detail & Related papers (2019-12-27T20:13:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.