A divide-and-conquer algorithm for quantum state preparation
- URL: http://arxiv.org/abs/2008.01511v2
- Date: Thu, 9 Sep 2021 17:59:51 GMT
- Title: A divide-and-conquer algorithm for quantum state preparation
- Authors: Israel F. Araujo, Daniel K. Park, Francesco Petruccione and Adenilton
J. da Silva
- Abstract summary: We show that it is possible to load an N-dimensional vector with a quantum circuit with polylogarithmic depth and entangled information in ancillary qubits.
Results show that we can efficiently load data in quantum devices using a divide-and-conquer strategy to exchange computational time for space.
- Score: 2.2596039727344457
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Advantages in several fields of research and industry are expected with the
rise of quantum computers. However, the computational cost to load classical
data in quantum computers can impose restrictions on possible quantum speedups.
Known algorithms to create arbitrary quantum states require quantum circuits
with depth O(N) to load an N-dimensional vector. Here, we show that it is
possible to load an N-dimensional vector with a quantum circuit with
polylogarithmic depth and entangled information in ancillary qubits. Results
show that we can efficiently load data in quantum devices using a
divide-and-conquer strategy to exchange computational time for space. We
demonstrate a proof of concept on a real quantum device and present two
applications for quantum machine learning. We expect that this new loading
strategy allows the quantum speedup of tasks that require to load a significant
volume of information to quantum devices.
Related papers
- Application of Large Language Models to Quantum State Simulation [0.11666234644810894]
Currently, various quantum simulators provide powerful tools for researchers, but simulating quantum evolution with these simulators often incurs high time costs.
This paper details the process of constructing 1-qubit and 2-qubit quantum simulator models, extending to multiple qubits, and ultimately implementing a 3-qubit example.
Our study demonstrates that LLMs can effectively learn and predict the evolution patterns among quantum bits, with minimal error compared to the theoretical output states.
arXiv Detail & Related papers (2024-10-09T07:23:13Z) - The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Quantum Resonant Dimensionality Reduction and Its Application in Quantum Machine Learning [2.7119354495508787]
We propose a quantum resonant dimension reduction (QRDR) algorithm based on the quantum resonant transition to reduce the dimension of input data.
After QRDR, the dimension of input data $N$ can be reduced into desired scale $R$, and the effective information of the original data will be preserved.
Our algorithm has the potential to be utilized in a variety of computing fields.
arXiv Detail & Related papers (2024-05-21T09:26:18Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - Data compression for quantum machine learning [2.119778346188635]
We address the problem of efficiently compressing and loading classical data for use on a quantum computer.
Our proposed methods allow both the required number of qubits and depth of the quantum circuit to be tuned.
arXiv Detail & Related papers (2022-04-24T03:03:14Z) - Qsun: an open-source platform towards practical quantum machine learning
applications [0.0]
This paper introduces our quantum virtual machine named Qsun, whose operation is underlined by quantum state wave-functions.
We then report two tests representative of quantum machine learning: quantum linear regression and quantum neural network.
arXiv Detail & Related papers (2021-07-22T09:37:31Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.