Qsun: an open-source platform towards practical quantum machine learning
applications
- URL: http://arxiv.org/abs/2107.10541v3
- Date: Tue, 1 Mar 2022 04:03:30 GMT
- Title: Qsun: an open-source platform towards practical quantum machine learning
applications
- Authors: Chuong Nguyen Quoc and Le Bin Ho and Lan Nguyen Tran and Hung Q.
Nguyen
- Abstract summary: This paper introduces our quantum virtual machine named Qsun, whose operation is underlined by quantum state wave-functions.
We then report two tests representative of quantum machine learning: quantum linear regression and quantum neural network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Currently, quantum hardware is restrained by noises and qubit numbers. Thus,
a quantum virtual machine that simulates operations of a quantum computer on
classical computers is a vital tool for developing and testing quantum
algorithms before deploying them on real quantum computers. Various variational
quantum algorithms have been proposed and tested on quantum virtual machines to
surpass the limitations of quantum hardware. Our goal is to exploit further the
variational quantum algorithms towards practical applications of quantum
machine learning using state-of-the-art quantum computers. This paper first
introduces our quantum virtual machine named Qsun, whose operation is
underlined by quantum state wave-functions. The platform provides native tools
supporting variational quantum algorithms. Especially using the parameter-shift
rule, we implement quantum differentiable programming essential for
gradient-based optimization. We then report two tests representative of quantum
machine learning: quantum linear regression and quantum neural network.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Review on Quantum Walk Computing: Theory, Implementation, and Application [0.30723404270319693]
The quantum walk is proposed as an important theoretical model for quantum computing.
Quantum walks and their variety have been extensively studied for achieving beyond classical computing power.
Recent progress has been achieved in implementing a wide variety of quantum walks and quantum walk applications.
arXiv Detail & Related papers (2024-04-05T15:45:35Z) - Quantum computing: principles and applications [3.717431207294639]
We introduce the basic principles of quantum computing and the multilayer architecture for a quantum computer.
Based on a mature experimental platform, the Nuclear Magnetic Resonance (NMR) platform, we introduce the basic steps to experimentally implement quantum computing.
arXiv Detail & Related papers (2023-10-13T20:12:28Z) - Q-Map: Quantum Circuit Implementation of Boolean Functions [0.0]
Development of quantum techniques and algorithms is essential to exploit the full power of quantum computers.
We propose a simple visual technique (we call Q-Map) for quantum realisation of classical logic circuits.
arXiv Detail & Related papers (2023-02-28T20:47:31Z) - Quantum Machine Learning: from physics to software engineering [58.720142291102135]
We show how classical machine learning approach can help improve the facilities of quantum computers.
We discuss how quantum algorithms and quantum computers may be useful for solving classical machine learning tasks.
arXiv Detail & Related papers (2023-01-04T23:37:45Z) - Optimal Stochastic Resource Allocation for Distributed Quantum Computing [50.809738453571015]
We propose a resource allocation scheme for distributed quantum computing (DQC) based on programming to minimize the total deployment cost for quantum resources.
The evaluation demonstrates the effectiveness and ability of the proposed scheme to balance the utilization of quantum computers and on-demand quantum computers.
arXiv Detail & Related papers (2022-09-16T02:37:32Z) - On exploring the potential of quantum auto-encoder for learning quantum systems [60.909817434753315]
We devise three effective QAE-based learning protocols to address three classically computational hard learning problems.
Our work sheds new light on developing advanced quantum learning algorithms to accomplish hard quantum physics and quantum information processing tasks.
arXiv Detail & Related papers (2021-06-29T14:01:40Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
Evolution in imaginary time is a prominent technique for finding the ground state of quantum many-body systems.
We propose an algorithm to implement imaginary time propagation on a quantum computer.
arXiv Detail & Related papers (2021-02-24T12:48:00Z) - Continuous Variable Quantum Advantages and Applications in Quantum
Optics [0.0]
This thesis focuses on three main questions in the continuous variable and optical settings.
Where does a quantum advantage, that is, the ability of quantum machines to outperform classical machines, come from?
What advantages can be gained in practice from the use of quantum information?
arXiv Detail & Related papers (2021-02-10T02:43:27Z) - Quantum walk processes in quantum devices [55.41644538483948]
We study how to represent quantum walk on a graph as a quantum circuit.
Our approach paves way for the efficient implementation of quantum walks algorithms on quantum computers.
arXiv Detail & Related papers (2020-12-28T18:04:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.