論文の概要: Deep Learning Brasil -- NLP at SemEval-2020 Task 9: Overview of
Sentiment Analysis of Code-Mixed Tweets
- arxiv url: http://arxiv.org/abs/2008.01544v1
- Date: Tue, 28 Jul 2020 16:42:41 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-06 01:53:55.795372
- Title: Deep Learning Brasil -- NLP at SemEval-2020 Task 9: Overview of
Sentiment Analysis of Code-Mixed Tweets
- Title(参考訳): Deep Learning Brasil -- SemEval-2020 Task 9: Code-Mixed Tweetsの知覚分析の概要
- Authors: Manoel Ver\'issimo dos Santos Neto, Ayrton Denner da Silva Amaral,
N\'adia F\'elix Felipe da Silva, Anderson da Silva Soares
- Abstract要約: 本稿では、コード混在のつぶやき(ヒンズー・イングリッシュ)における感情を予測する手法について述べる。
CodaLabのVerissimo.manoelというチームが、4つのモデルのアンサンブルに基づいたアプローチを開発しました。
最終分類アルゴリズムは、これらの4つのモデルから得られる全てのソフトマックス値のいくつかの予測の集合である。
- 参考スコア(独自算出の注目度): 0.2294014185517203
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we describe a methodology to predict sentiment in code-mixed
tweets (hindi-english). Our team called verissimo.manoel in CodaLab developed
an approach based on an ensemble of four models (MultiFiT, BERT, ALBERT, and
XLNET). The final classification algorithm was an ensemble of some predictions
of all softmax values from these four models. This architecture was used and
evaluated in the context of the SemEval 2020 challenge (task 9), and our system
got 72.7% on the F1 score.
- Abstract(参考訳): 本稿では,コード混合ツイート(hindi- english)における感情予測手法について述べる。
CodaLabのVerissimo.manoelと呼ばれるチームは、4つのモデルのアンサンブル(MultiFiT, BERT, ALBERT, XLNET)に基づいたアプローチを開発した。
最終分類アルゴリズムは、これらの4つのモデルから得られる全てのソフトマックス値のいくつかの予測の集合である。
このアーキテクチャは、SemEval 2020チャレンジ(タスク9)の文脈で使用され、評価され、私たちのシステムはF1スコアで72.7%を獲得しました。
関連論文リスト
- InfiMM-WebMath-40B: Advancing Multimodal Pre-Training for Enhanced Mathematical Reasoning [58.7966588457529]
InfiMM-WebMath-40Bは、インターリーブされた画像テキスト文書の高品質なデータセットである。
ウェブページは2400万、画像URLは8500万、テキストトークンは400億だ。
テキストのみのベンチマークでは,400億トークンしか利用していないにもかかわらず,データセットは1.3Bモデルの性能を大幅に向上させることが示された。
私たちのモデルは、MathVerseやWe-Mathといったマルチモーダルな数学ベンチマーク上で、オープンソースモデルの中で新しい最先端のモデルを設定しました。
論文 参考訳(メタデータ) (2024-09-19T08:41:21Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
非英語で作業する場合に頻繁に発生する問題は、注釈付きトレーニングデータの不足である。
我々は,様々なトランスファー学習技術を組み合わせた,シンプルだが効果的なアンサンブルベースのフレームワークを設計する。
また、ウィキペディアアンカーテキストを利用して、コア参照解決モデルをブートストラップする低コストのTL手法を提案する。
論文 参考訳(メタデータ) (2023-01-22T18:22:55Z) - UrduFake@FIRE2020: Shared Track on Fake News Identification in Urdu [62.6928395368204]
本稿では、ウルドゥー語における偽ニュース検出に関するFIRE 2020における最初の共有タスクの概要について述べる。
目標は、900の注釈付きニュース記事と400のニュース記事からなるデータセットを使って偽ニュースを特定することである。
データセットには、 (i) Health、 (ii) Sports、 (iii) Showbiz、 (iv) Technology、 (v) Businessの5つのドメインのニュースが含まれている。
論文 参考訳(メタデータ) (2022-07-25T03:46:51Z) - Overview of the Shared Task on Fake News Detection in Urdu at FIRE 2020 [62.6928395368204]
タスクはバイナリ分類タスクとして設定され、ゴールはリアルニュースとフェイクニュースを区別することである。
トレーニング用に900の注釈付きニュース記事とテスト用に400のニュース記事のデータセットを作成した。
6カ国(インド、中国、エジプト、ドイツ、パキスタン、イギリス)の42チームが登録された。
論文 参考訳(メタデータ) (2022-07-25T03:41:32Z) - Unifying Language Learning Paradigms [96.35981503087567]
データセットやセットアップ全体にわたって普遍的に有効である事前学習モデルのための統一的なフレームワークを提案する。
本研究では, 事前学習対象を相互に配置し, 異なる対象間の補間を効果的に行う方法を示す。
また,テキスト内学習において,ゼロショットSuperGLUEで175B GPT-3,ワンショット要約でT5-XXLの性能を3倍に向上させた。
論文 参考訳(メタデータ) (2022-05-10T19:32:20Z) - HFL at SemEval-2022 Task 8: A Linguistics-inspired Regression Model with
Data Augmentation for Multilingual News Similarity [16.454545004093735]
本稿では,SemEval-2022 Task 8: Multilingual News Article similarityについて述べる。
我々は,いくつかのタスク固有の戦略で訓練された言語モデルを提案した。
Pearson's correlation Coefficient of 0.818 on the official evaluation set。
論文 参考訳(メタデータ) (2022-04-11T03:08:37Z) - Sentiment Analysis of Code-Mixed Social Media Text (Hinglish) [4.081440927534578]
感情分析のさまざまな段階は、データ統合、データクリーニング、データ変換、モデリングであった。
モデルは、SVM、KNN、Decision Trees、Random Forests、Naive Bayes、Logistic Regression、およびアンサンブル投票分類器など、さまざまな機械学習アルゴリズムを使用して作成された。
論文 参考訳(メタデータ) (2021-02-24T09:15:34Z) - Palomino-Ochoa at SemEval-2020 Task 9: Robust System based on
Transformer for Code-Mixed Sentiment Classification [1.6244541005112747]
本稿では、スペイン語と英語の混合感情分類タスクを実行するための移動学習システムを提案する。
提案手法では,最先端の言語モデルBERTを使用し,UMMFiT転送学習パイプラインに組み込む。
論文 参考訳(メタデータ) (2020-11-18T18:25:58Z) - Phonemer at WNUT-2020 Task 2: Sequence Classification Using COVID
Twitter BERT and Bagging Ensemble Technique based on Plurality Voting [0.0]
新型コロナウイルス(COVID-19)に関連する英語のつぶやきを自動的に識別するシステムを開発した。
最終アプローチでは0.9037のF1スコアを達成し,F1スコアを評価基準として総合6位にランク付けした。
論文 参考訳(メタデータ) (2020-10-01T10:54:54Z) - NLP-CIC at SemEval-2020 Task 9: Analysing sentiment in code-switching
language using a simple deep-learning classifier [63.137661897716555]
コードスイッチングは、2つ以上の言語が同じメッセージで使用される現象である。
標準的な畳み込みニューラルネットワークモデルを用いて、スペイン語と英語の混在するツイートの感情を予測する。
論文 参考訳(メタデータ) (2020-09-07T19:57:09Z) - LIMSI_UPV at SemEval-2020 Task 9: Recurrent Convolutional Neural Network
for Code-mixed Sentiment Analysis [8.8561720398658]
本稿では,SemEval-2020 Task 9: Sentiment Analysis for Code-Mixed Social Media TextにおけるLIMSI UPVチームの参加について述べる。
提案手法はSentiMix Hindi- English subtaskで競合し、Hindi- English code-mixedTweetの感情を予測する問題に対処した。
本稿では,リカレントニューラルネットワークと畳み込みニューラルネットワークを併用して,テキストのセマンティクスをよりよく捉えたリカレント畳み込みニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2020-08-30T13:52:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。