論文の概要: LecEval: An Automated Metric for Multimodal Knowledge Acquisition in Multimedia Learning
- arxiv url: http://arxiv.org/abs/2505.02078v1
- Date: Sun, 04 May 2025 12:06:47 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-06 18:49:35.417737
- Title: LecEval: An Automated Metric for Multimodal Knowledge Acquisition in Multimedia Learning
- Title(参考訳): LecEval: マルチメディア学習におけるマルチモーダル知識獲得のための自動メトリクス
- Authors: Joy Lim Jia Yin, Daniel Zhang-Li, Jifan Yu, Haoxuan Li, Shangqing Tu, Yuanchun Wang, Zhiyuan Liu, Huiqin Liu, Lei Hou, Juanzi Li, Bin Xu,
- Abstract要約: 本稿では,マイアーのマルチメディア学習認知理論に基礎を置く自動計量であるLecEvalを紹介する。
LecEvalは、コンテンツ関連(CR)、表現的明瞭度(EC)、論理構造(LS)、聴取エンゲージメント(AE)の4つのルーリックを用いて効果を評価する
私たちは、50以上のオンラインコースビデオから2000以上のスライドからなる大規模なデータセットをキュレートします。
- 参考スコア(独自算出の注目度): 58.98865450345401
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Evaluating the quality of slide-based multimedia instruction is challenging. Existing methods like manual assessment, reference-based metrics, and large language model evaluators face limitations in scalability, context capture, or bias. In this paper, we introduce LecEval, an automated metric grounded in Mayer's Cognitive Theory of Multimedia Learning, to evaluate multimodal knowledge acquisition in slide-based learning. LecEval assesses effectiveness using four rubrics: Content Relevance (CR), Expressive Clarity (EC), Logical Structure (LS), and Audience Engagement (AE). We curate a large-scale dataset of over 2,000 slides from more than 50 online course videos, annotated with fine-grained human ratings across these rubrics. A model trained on this dataset demonstrates superior accuracy and adaptability compared to existing metrics, bridging the gap between automated and human assessments. We release our dataset and toolkits at https://github.com/JoylimJY/LecEval.
- Abstract(参考訳): スライドベースのマルチメディア教育の質を評価することは困難である。
手動アセスメント、参照ベースのメトリクス、大規模言語モデル評価といった既存の手法は、スケーラビリティ、コンテキストキャプチャ、バイアスの制限に直面します。
本稿では,マイアーのマルチメディア学習認知理論に基づく自動計量であるLecEvalを紹介し,スライド学習におけるマルチモーダル知識獲得を評価する。
LecEvalは、Content Relevance(CR)、Expressive Clarity(EC)、Logical Structure(LS)、Audience Engagement(AE)の4つのルーリックを用いて効果を評価する。
私たちは、50以上のオンラインコースビデオから2000以上のスライドからなる大規模なデータセットをキュレートしました。
このデータセットでトレーニングされたモデルでは、既存のメトリクスと比較して精度と適応性が向上し、自動評価と人的評価のギャップを埋める。
データセットとツールキットはhttps://github.com/JoylimJY/LecEval.orgで公開しています。
関連論文リスト
- LLM-SEM: A Sentiment-Based Student Engagement Metric Using LLMS for E-Learning Platforms [0.0]
LLM-SEM (Language Model-Based Students Engagement Metric) は,ビデオメタデータと学生コメントの感情分析を利用してエンゲージメントを測定する手法である。
我々は、テキストの曖昧さを軽減し、ビューやいいね!といった重要な特徴を正規化するために、高品質な感情予測を生成する。
包括的メタデータと感情極性スコアを組み合わせることで、コースと授業レベルのエンゲージメントを測定する。
論文 参考訳(メタデータ) (2024-12-18T12:01:53Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - Are Large Language Models Good Classifiers? A Study on Edit Intent Classification in Scientific Document Revisions [62.12545440385489]
大規模言語モデル(LLM)は、テキスト生成の大幅な進歩をもたらしたが、分類タスクの強化の可能性はまだ未検討である。
生成と符号化の両方のアプローチを含む分類のための微調整LDMを徹底的に研究するためのフレームワークを提案する。
我々はこのフレームワークを編集意図分類(EIC)においてインスタンス化する。
論文 参考訳(メタデータ) (2024-10-02T20:48:28Z) - Enhancing Text Classification through LLM-Driven Active Learning and Human Annotation [2.0411082897313984]
本研究では,人間のアノテータと大規模言語モデルを統合する新しい手法を提案する。
提案フレームワークは, モデルの不確実性レベルに応じて, 人間のアノテーションとLLMの出力を統合する。
実験結果から, モデル精度の維持・改善を図りながら, データアノテーションに関連するコストを大幅に削減した。
論文 参考訳(メタデータ) (2024-06-17T21:45:48Z) - Self-Supervised Multimodal Learning: A Survey [23.526389924804207]
マルチモーダル学習は、複数のモーダルからの情報を理解し分析することを目的としている。
高価なヒューマンアノテーションと組み合わせたデータへの大きな依存は、モデルのスケールアップを妨げる。
大規模無意味なデータが野生で利用可能であることを考えると、自己教師型学習は、アノテーションボトルネックを軽減するための魅力的な戦略となっている。
論文 参考訳(メタデータ) (2023-03-31T16:11:56Z) - Revisiting Classifier: Transferring Vision-Language Models for Video
Recognition [102.93524173258487]
ダウンストリームタスクのためのタスク非依存の深層モデルから知識を伝達することは、コンピュータビジョン研究において重要なトピックである。
本研究では,映像分類作業における知識の伝達に着目した。
予測された言語モデルを用いて、効率的な翻訳学習のための適切なセマンティックターゲットを生成する。
論文 参考訳(メタデータ) (2022-07-04T10:00:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。