A coarse-to-fine framework for unsupervised multi-contrast MR image
deformable registration with dual consistency constraint
- URL: http://arxiv.org/abs/2008.01896v3
- Date: Tue, 16 Feb 2021 06:07:20 GMT
- Title: A coarse-to-fine framework for unsupervised multi-contrast MR image
deformable registration with dual consistency constraint
- Authors: Weijian Huang, Hao Yang, Xinfeng Liu, Cheng Li, Ian Zhang, Rongpin
Wang, Hairong Zheng, Shanshan Wang
- Abstract summary: We propose a novel unsupervised learning-based framework to achieve accurate and efficient multi-contrast MR image registrations.
Specifically, an end-to-end coarse-to-fine network architecture consisting of affine and deformable transformations is designed.
Our method is about 10 times faster than the most competitive method of SyN (Affine) when testing on a CPU.
- Score: 20.905285486843006
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-contrast magnetic resonance (MR) image registration is useful in the
clinic to achieve fast and accurate imaging-based disease diagnosis and
treatment planning. Nevertheless, the efficiency and performance of the
existing registration algorithms can still be improved. In this paper, we
propose a novel unsupervised learning-based framework to achieve accurate and
efficient multi-contrast MR image registrations. Specifically, an end-to-end
coarse-to-fine network architecture consisting of affine and deformable
transformations is designed to improve the robustness and achieve end-to-end
registration. Furthermore, a dual consistency constraint and a new prior
knowledge-based loss function are developed to enhance the registration
performances. The proposed method has been evaluated on a clinical dataset
containing 555 cases, and encouraging performances have been achieved. Compared
to the commonly utilized registration methods, including VoxelMorph, SyN, and
LT-Net, the proposed method achieves better registration performance with a
Dice score of 0.8397 in identifying stroke lesions. With regards to the
registration speed, our method is about 10 times faster than the most
competitive method of SyN (Affine) when testing on a CPU. Moreover, we prove
that our method can still perform well on more challenging tasks with lacking
scanning information data, showing high robustness for the clinical
application.
Related papers
- Recurrent Inference Machine for Medical Image Registration [11.351457718409788]
We propose a novel image registration method, termed Recurrent Inference Image Registration (RIIR) network.
RIIR is formulated as a meta-learning solver to the registration problem in an iterative manner.
Our experiments showed that RIIR outperformed a range of deep learning-based methods, even with only $5%$ of the training data.
arXiv Detail & Related papers (2024-06-19T10:06:35Z) - RegWSI: Whole Slide Image Registration using Combined Deep Feature- and Intensity-Based Methods: Winner of the ACROBAT 2023 Challenge [1.7625447004432986]
A robust, efficient, and accurate registration method is highly desired by the scientific community and hospitals specializing in digital pathology.
We propose a two-step hybrid method consisting of (i) deep learning- and feature-based initial alignment algorithm, and (ii) intensity-based nonrigid registration.
The proposed method does not require any fine-tuning to a particular dataset and can be used directly for any desired tissue type and stain.
arXiv Detail & Related papers (2024-04-19T16:19:30Z) - PREM: A Simple Yet Effective Approach for Node-Level Graph Anomaly
Detection [65.24854366973794]
Node-level graph anomaly detection (GAD) plays a critical role in identifying anomalous nodes from graph-structured data in domains such as medicine, social networks, and e-commerce.
We introduce a simple method termed PREprocessing and Matching (PREM for short) to improve the efficiency of GAD.
Our approach streamlines GAD, reducing time and memory consumption while maintaining powerful anomaly detection capabilities.
arXiv Detail & Related papers (2023-10-18T02:59:57Z) - GSMorph: Gradient Surgery for cine-MRI Cardiac Deformable Registration [62.41725951450803]
Learning-based deformable registration relies on weighted objective functions trading off registration accuracy and smoothness of the field.
We construct a registration model based on the gradient surgery mechanism, named GSMorph, to achieve a hyper parameter-free balance on multiple losses.
Our method is model-agnostic and can be merged into any deep registration network without introducing extra parameters or slowing down inference.
arXiv Detail & Related papers (2023-06-26T13:32:09Z) - Recurrence With Correlation Network for Medical Image Registration [66.63200823918429]
We present Recurrence with Correlation Network (RWCNet), a medical image registration network with multi-scale features and a cost volume layer.
We demonstrate that these architectural features improve medical image registration accuracy in two image registration datasets.
arXiv Detail & Related papers (2023-02-05T02:41:46Z) - Real-time landmark detection for precise endoscopic submucosal
dissection via shape-aware relation network [51.44506007844284]
We propose a shape-aware relation network for accurate and real-time landmark detection in endoscopic submucosal dissection surgery.
We first devise an algorithm to automatically generate relation keypoint heatmaps, which intuitively represent the prior knowledge of spatial relations among landmarks.
We then develop two complementary regularization schemes to progressively incorporate the prior knowledge into the training process.
arXiv Detail & Related papers (2021-11-08T07:57:30Z) - SAME: Deformable Image Registration based on Self-supervised Anatomical
Embeddings [16.38383865408585]
This work is built on a recent algorithm SAM, which is capable of computing dense anatomical/semantic correspondences between two images at the pixel level.
Our method is named SAME, which breaks down image registration into three steps: affine transformation, coarse deformation, and deep deformable registration.
arXiv Detail & Related papers (2021-09-23T18:03:11Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - F3RNet: Full-Resolution Residual Registration Network for Deformable
Image Registration [21.99118499516863]
Deformable image registration (DIR) is essential for many image-guided therapies.
We propose a novel unsupervised registration network, namely the Full-Resolution Residual Registration Network (F3RNet)
One stream takes advantage of the full-resolution information that facilitates accurate voxel-level registration.
The other stream learns the deep multi-scale residual representations to obtain robust recognition.
arXiv Detail & Related papers (2020-09-15T15:05:54Z) - CycleMorph: Cycle Consistent Unsupervised Deformable Image Registration [34.546992605648086]
We present a cycle-consistent deformable image registration. The cycle consistency enhances image registration performance by providing an implicit regularization to preserve topology during the deformation.
Experimental results on various datasets from medical and non-medical applications demonstrate that the proposed method provides effective and accurate registration on diverse image pairs within a few seconds.
arXiv Detail & Related papers (2020-08-13T09:30:12Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.