Recurrent Inference Machine for Medical Image Registration
- URL: http://arxiv.org/abs/2406.13413v1
- Date: Wed, 19 Jun 2024 10:06:35 GMT
- Title: Recurrent Inference Machine for Medical Image Registration
- Authors: Yi Zhang, Yidong Zhao, Hui Xue, Peter Kellman, Stefan Klein, Qian Tao,
- Abstract summary: We propose a novel image registration method, termed Recurrent Inference Image Registration (RIIR) network.
RIIR is formulated as a meta-learning solver to the registration problem in an iterative manner.
Our experiments showed that RIIR outperformed a range of deep learning-based methods, even with only $5%$ of the training data.
- Score: 11.351457718409788
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image registration is essential for medical image applications where alignment of voxels across multiple images is needed for qualitative or quantitative analysis. With recent advancements in deep neural networks and parallel computing, deep learning-based medical image registration methods become competitive with their flexible modelling and fast inference capabilities. However, compared to traditional optimization-based registration methods, the speed advantage may come at the cost of registration performance at inference time. Besides, deep neural networks ideally demand large training datasets while optimization-based methods are training-free. To improve registration accuracy and data efficiency, we propose a novel image registration method, termed Recurrent Inference Image Registration (RIIR) network. RIIR is formulated as a meta-learning solver to the registration problem in an iterative manner. RIIR addresses the accuracy and data efficiency issues, by learning the update rule of optimization, with implicit regularization combined with explicit gradient input. We evaluated RIIR extensively on brain MRI and quantitative cardiac MRI datasets, in terms of both registration accuracy and training data efficiency. Our experiments showed that RIIR outperformed a range of deep learning-based methods, even with only $5\%$ of the training data, demonstrating high data efficiency. Key findings from our ablation studies highlighted the important added value of the hidden states introduced in the recurrent inference framework for meta-learning. Our proposed RIIR offers a highly data-efficient framework for deep learning-based medical image registration.
Related papers
- Recurrence With Correlation Network for Medical Image Registration [66.63200823918429]
We present Recurrence with Correlation Network (RWCNet), a medical image registration network with multi-scale features and a cost volume layer.
We demonstrate that these architectural features improve medical image registration accuracy in two image registration datasets.
arXiv Detail & Related papers (2023-02-05T02:41:46Z) - Train smarter, not harder: learning deep abdominal CT registration on
scarce data [0.8179387741893692]
We explore training strategies to improve convolutional neural network-based image-to-image registration for abdominal imaging.
Guiding registration using segmentations in the training step proved beneficial for deep-learning-based image registration.
Finetuning the pretrained model from the brain MRI dataset to the abdominal CT dataset further improved performance.
arXiv Detail & Related papers (2022-11-28T19:03:01Z) - Attentive Symmetric Autoencoder for Brain MRI Segmentation [56.02577247523737]
We propose a novel Attentive Symmetric Auto-encoder based on Vision Transformer (ViT) for 3D brain MRI segmentation tasks.
In the pre-training stage, the proposed auto-encoder pays more attention to reconstruct the informative patches according to the gradient metrics.
Experimental results show that our proposed attentive symmetric auto-encoder outperforms the state-of-the-art self-supervised learning methods and medical image segmentation models.
arXiv Detail & Related papers (2022-09-19T09:43:19Z) - Automated Learning for Deformable Medical Image Registration by Jointly
Optimizing Network Architectures and Objective Functions [69.6849409155959]
This paper proposes an automated learning registration algorithm (AutoReg) that cooperatively optimize both architectures and their corresponding training objectives.
We conduct image registration experiments on multi-site volume datasets and various registration tasks.
Our results show that our AutoReg may automatically learn an optimal deep registration network for given volumes and achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-14T01:54:38Z) - Deformable Image Registration with Deep Network Priors: a Study on
Longitudinal PET Images [0.5949967357689445]
Inspired by Deep Image Prior, this paper introduces a different use of deep architectures as regularizers to tackle the image registration question.
We propose a subject-specific deformable registration method called MIRRBA, relying on a deep pyramidal architecture to be the prior model constraining the deformation field.
We demonstrate the regularizing power of deep architectures and present new elements to understand the role of the architecture in deep learning methods for registration.
arXiv Detail & Related papers (2021-11-22T10:58:14Z) - A Deep Discontinuity-Preserving Image Registration Network [73.03885837923599]
Most deep learning-based registration methods assume that the desired deformation fields are globally smooth and continuous.
We propose a weakly-supervised Deep Discontinuity-preserving Image Registration network (DDIR) to obtain better registration performance and realistic deformation fields.
We demonstrate that our method achieves significant improvements in registration accuracy and predicts more realistic deformations, in registration experiments on cardiac magnetic resonance (MR) images.
arXiv Detail & Related papers (2021-07-09T13:35:59Z) - FDRN: A Fast Deformable Registration Network for Medical Images [3.3504365823045044]
We propose a fast convolutional neural network to boost the registration performance in both accuracy and runtime.
We show FDRN outperforms the existing state-of-the-art registration methods for brain MR images by resorting to the compact network structure and efficient learning.
arXiv Detail & Related papers (2020-11-04T14:09:51Z) - F3RNet: Full-Resolution Residual Registration Network for Deformable
Image Registration [21.99118499516863]
Deformable image registration (DIR) is essential for many image-guided therapies.
We propose a novel unsupervised registration network, namely the Full-Resolution Residual Registration Network (F3RNet)
One stream takes advantage of the full-resolution information that facilitates accurate voxel-level registration.
The other stream learns the deep multi-scale residual representations to obtain robust recognition.
arXiv Detail & Related papers (2020-09-15T15:05:54Z) - A coarse-to-fine framework for unsupervised multi-contrast MR image
deformable registration with dual consistency constraint [20.905285486843006]
We propose a novel unsupervised learning-based framework to achieve accurate and efficient multi-contrast MR image registrations.
Specifically, an end-to-end coarse-to-fine network architecture consisting of affine and deformable transformations is designed.
Our method is about 10 times faster than the most competitive method of SyN (Affine) when testing on a CPU.
arXiv Detail & Related papers (2020-08-05T01:16:45Z) - An Auto-Context Deformable Registration Network for Infant Brain MRI [54.57017031561516]
We propose an infant-dedicated deep registration network that uses the auto-context strategy to gradually refine the deformation fields.
Our method estimates the deformation fields by invoking a single network multiple times for iterative deformation refinement.
Experimental results in comparison with state-of-the-art registration methods indicate that our method achieves higher accuracy while at the same time preserves the smoothness of the deformation fields.
arXiv Detail & Related papers (2020-05-19T06:00:13Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.