Robust phase estimation of Gaussian states in the presence of outlier
quantum states
- URL: http://arxiv.org/abs/2008.01933v1
- Date: Wed, 5 Aug 2020 04:57:02 GMT
- Title: Robust phase estimation of Gaussian states in the presence of outlier
quantum states
- Authors: Yukito Mototake and Jun Suzuki
- Abstract summary: We first present a statistical framework of robust statistics in a quantum system to handle outlier quantum states.
We then apply the method of M-estimators to suppress untrusted measurement outcomes due to outlier quantum states.
- Score: 21.22196305592545
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we investigate the problem of estimating the phase of a
coherent state in the presence of unavoidable noisy quantum states. These
unwarranted quantum states are represented by outlier quantum states in this
study. We first present a statistical framework of robust statistics in a
quantum system to handle outlier quantum states. We then apply the method of
M-estimators to suppress untrusted measurement outcomes due to outlier quantum
states. Our proposal has the advantage over the classical methods in being
systematic, easy to implement, and robust against occurrence of noisy states.
Related papers
- Effect of the readout efficiency of quantum measurement on the system entanglement [44.99833362998488]
We quantify the entanglement for a particle on a 1d quantum random walk under inefficient monitoring.
We find that the system's maximal mean entanglement at the measurement-induced quantum-to-classical crossover is in different ways by the measurement strength and inefficiency.
arXiv Detail & Related papers (2024-02-29T18:10:05Z) - Measurement-Device-Independent Detection of Beyond-Quantum State [53.64687146666141]
We propose a measurement-device-independent (MDI) test for beyond-quantum state detection.
We discuss the importance of tomographic completeness of the input sets to the detection.
arXiv Detail & Related papers (2023-12-11T06:40:13Z) - Protecting quantum correlations of negative quantum states using weak
measurement under non-Markovian noise [0.0]
Weak measurement (WM) and quantum measurement reversal (QMR) are crucial in protecting the collapse of quantum states.
We study the quantum correlations, maximal fidelity, and fidelity deviation of the two-qubit negative quantum states developed using discrete Wigner functions.
Some negative quantum states perform better with WM and QMR than the Bell state for different cases under evolution via noisy quantum channels.
arXiv Detail & Related papers (2023-09-12T11:19:20Z) - Certifying activation of quantum correlations with finite data [0.0]
Quantum theory allows for different classes of correlations, such as entanglement, steerability or Bell-nonlocality.
We show how our methods can be used to analyse the activation of quantum correlations by local filtering, specifically for Bell-nonlocality and quantum steerability.
arXiv Detail & Related papers (2023-05-05T18:00:00Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Experimental demonstration of robustness of Gaussian quantum coherence [5.522952775766461]
We experimentally quantify the quantum coherence of a squeezed state and a Gaussian Einstein-Podolsky-Rosen entangled state transmitted in a thermal noise channel.
Our results pave the way for application of Gaussian quantum coherence in lossy and noisy environments.
arXiv Detail & Related papers (2021-05-24T14:16:03Z) - Emulation of quantum measurements with mixtures of coherent states [0.0]
We propose a methodology to emulate quantum phenomena arising from any non-classical quantum state.
This allows us to successfully reproduce well-known quantum effects using resources that can be much more feasibly generated in the laboratory.
arXiv Detail & Related papers (2021-04-30T14:00:24Z) - Preparing random states and benchmarking with many-body quantum chaos [48.044162981804526]
We show how to predict and experimentally observe the emergence of random state ensembles naturally under time-independent Hamiltonian dynamics.
The observed random ensembles emerge from projective measurements and are intimately linked to universal correlations built up between subsystems of a larger quantum system.
Our work has implications for understanding randomness in quantum dynamics, and enables applications of this concept in a wider context.
arXiv Detail & Related papers (2021-03-05T08:32:43Z) - Direct Quantum Communications in the Presence of Realistic Noisy
Entanglement [69.25543534545538]
We propose a novel quantum communication scheme relying on realistic noisy pre-shared entanglement.
Our performance analysis shows that the proposed scheme offers competitive QBER, yield, and goodput.
arXiv Detail & Related papers (2020-12-22T13:06:12Z) - Single-copies estimation of entanglement negativity [1.7179583883220435]
Entanglement plays a central role in quantum information processing.
We propose a scheme to estimate the entanglement negativity of any bi- partition of a composite system.
arXiv Detail & Related papers (2020-04-23T17:57:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.