Experimental demonstration of robustness of Gaussian quantum coherence
- URL: http://arxiv.org/abs/2105.11286v1
- Date: Mon, 24 May 2021 14:16:03 GMT
- Title: Experimental demonstration of robustness of Gaussian quantum coherence
- Authors: Haijun Kang, Dongmei Han, Na Wang, Yang Liu, Shuhong Hao, and Xiaolong
Su
- Abstract summary: We experimentally quantify the quantum coherence of a squeezed state and a Gaussian Einstein-Podolsky-Rosen entangled state transmitted in a thermal noise channel.
Our results pave the way for application of Gaussian quantum coherence in lossy and noisy environments.
- Score: 5.522952775766461
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Besides quantum entanglement and steering, quantum coherence has also been
identified as a useful quantum resource in quantum information. It is important
to investigate the evolution of quantum coherence in practical quantum
channels. In this paper, we experimentally quantify the quantum coherence of a
squeezed state and a Gaussian Einstein-Podolsky-Rosen (EPR) entangled state
transmitted in Gaussian thermal noise channel, respectively. By reconstructing
the covariance matrix of the transmitted states, quantum coherence of these
Gaussian states is quantified by calculating the relative entropy. We show that
quantum coherence of the squeezed state and the Gaussian EPR entangled state is
robust against loss and noise in a quantum channel, which is different from the
properties of squeezing and Gaussian entanglement. Our experimental results
pave the way for application of Gaussian quantum coherence in lossy and noisy
environments.
Related papers
- The multimode conditional quantum Entropy Power Inequality and the squashed entanglement of the extreme multimode bosonic Gaussian channels [53.253900735220796]
Inequality determines the minimum conditional von Neumann entropy of the output of the most general linear mixing of bosonic quantum modes.
Bosonic quantum systems constitute the mathematical model for the electromagnetic radiation in the quantum regime.
arXiv Detail & Related papers (2024-10-18T13:59:50Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Quantum error mitigation for Fourier moment computation [49.1574468325115]
This paper focuses on the computation of Fourier moments within the context of a nuclear effective field theory on superconducting quantum hardware.
The study integrates echo verification and noise renormalization into Hadamard tests using control reversal gates.
The analysis, conducted using noise models, reveals a significant reduction in noise strength by two orders of magnitude.
arXiv Detail & Related papers (2024-01-23T19:10:24Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
We explore the applicability of quantum-data learning to practical problems in high-energy physics.
We make use of ansatz based on quantum convolutional neural networks and numerically show that it is capable of recognizing quantum phases of ground states.
The observation of non-trivial learning properties demonstrated in these benchmarks will motivate further exploration of the quantum-data learning architecture in high-energy physics.
arXiv Detail & Related papers (2023-06-29T18:00:01Z) - The power of noisy quantum states and the advantage of resource dilution [62.997667081978825]
Entanglement distillation allows to convert noisy quantum states into singlets.
We show that entanglement dilution can increase the resilience of shared quantum states to local noise.
arXiv Detail & Related papers (2022-10-25T17:39:29Z) - Diagnostics of quantum-gate coherences via end-point-measurement
statistics [0.0]
We consider a figure of merit encoding the information on how the coherence generated on average by a quantum gate is affected by unitary errors.
We provide numerical evidence that such information is well captured by the statistics of local energy measurements on the output states of the gate.
arXiv Detail & Related papers (2022-09-05T16:39:21Z) - Quantifying quantum correlations in noisy Gaussian channels [0.0]
We describe a scheme that aims to specify and examine the dynamic evolution of the quantum correlations in two-modes Gaussian states.
We show that the Gaussian interferometric power is a measurement quantifier that can capture the essential quantum correlations beyond quantum entanglement.
arXiv Detail & Related papers (2022-07-26T11:34:35Z) - Experimental investigation of quantum uncertainty relations with
classical shadows [7.675613458661457]
We experimentally investigate quantum uncertainty relations construed with relative entropy of coherence.
We prepare a family of quantum states whose purity can be fully controlled.
Our results indicate the tightness of quantum coherence lower bounds dependents on the reference bases as well as the purity of quantum state.
arXiv Detail & Related papers (2022-02-14T00:26:31Z) - Quantum Non-Gaussianity From An Indefinite Causal Order of Gaussian
Operations [0.0]
Quantum Non-Gaussian states are considered as a useful resource for many tasks in quantum information processing.
We are addressing to be very useful to engineer highly non-Gaussian states from operations whose order is controlled by degrees of freedom of a control qubit.
arXiv Detail & Related papers (2021-08-30T09:20:17Z) - Quantum information spreading in a disordered quantum walk [50.591267188664666]
We design a quantum probing protocol using Quantum Walks to investigate the Quantum Information spreading pattern.
We focus on the coherent static and dynamic disorder to investigate anomalous and classical transport.
Our results show that a Quantum Walk can be considered as a readout device of information about defects and perturbations occurring in complex networks.
arXiv Detail & Related papers (2020-10-20T20:03:19Z) - Quantum Correlations beyond Entanglement and Discord [0.0]
We experimentally realize a form of quantum correlation that exists even in the absence of entanglement and discord.
We implement a robust kind of nonclassical photon-photon correlated state with useful applications in quantum information processing.
arXiv Detail & Related papers (2020-10-07T15:52:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.