論文の概要: Parallel, Self Organizing, Consensus Neural Networks
- arxiv url: http://arxiv.org/abs/2008.02067v1
- Date: Thu, 30 Jul 2020 21:02:10 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-05 13:13:31.361539
- Title: Parallel, Self Organizing, Consensus Neural Networks
- Title(参考訳): 並列・自己組織化・合意型ニューラルネットワーク
- Authors: Homayoun Valafar, Faramarz Valafar, Okan Ersoy
- Abstract要約: 新しいニューラルネットワークアーキテクチャ(PSCNN)は、そのようなネットワークの性能と速度を改善するために開発された。
PSCNNは全症例において優れた成績を示した。
- 参考スコア(独自算出の注目度): 0.2578242050187029
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A new neural network architecture (PSCNN) is developed to improve performance
and speed of such networks. The architecture has all the advantages of the
previous models such as self-organization and possesses some other superior
characteristics such as input parallelism and decision making based on
consensus. Due to the properties of this network, it was studied with respect
to implementation on a Parallel Processor (Ncube Machine) as well as a regular
sequential machine. The architecture self organizes its own modules in a way to
maximize performance. Since it is completely parallel, both recall and learning
procedures are very fast. The performance of the network was compared to the
Backpropagation networks in problems of language perception, remote sensing and
binary logic (Exclusive-Or). PSCNN showed superior performance in all cases
studied.
- Abstract(参考訳): 新しいニューラルネットワークアーキテクチャ(pscnn)が開発され、ネットワークの性能と速度が向上した。
アーキテクチャは、自己組織化のような以前のモデルの利点をすべて備えており、入力並列性やコンセンサスに基づく意思決定といった他の優れた特性を持っている。
このネットワークの特性から、通常のシーケンシャルマシンと同様にパラレルプロセッサ(Ncube Machine)の実装に関して研究された。
アーキテクチャはパフォーマンスを最大化するために独自のモジュールを自己組織化する。
完全に並列であるため、リコールと学習の手順はいずれも非常に高速である。
ネットワークの性能は、言語知覚、リモートセンシング、二分論理(排他的論理)の問題におけるバックプロパゲーションネットワークと比較された。
PSCNNは全症例において優れた成績を示した。
関連論文リスト
- Investigating Sparsity in Recurrent Neural Networks [0.0]
本論文は, プルーニングとスパースリカレントニューラルネットワークがRNNの性能に与える影響を考察することに焦点を当てる。
まず,RNNの刈り込み,RNNの性能への影響,および刈り込み後の精度回復に必要な訓練エポック数について述べる。
次に、スパースリカレントニューラルネットワークの作成と訓練を継続し、その基礎となる任意の構造の性能とグラフ特性の関係を同定する。
論文 参考訳(メタデータ) (2024-07-30T07:24:58Z) - Principled Architecture-aware Scaling of Hyperparameters [69.98414153320894]
高品質のディープニューラルネットワークをトレーニングするには、非自明で高価なプロセスである適切なハイパーパラメータを選択する必要がある。
本研究では,ネットワークアーキテクチャにおける初期化と最大学習率の依存性を正確に評価する。
ネットワークランキングは、ベンチマークのトレーニングネットワークにより容易に変更可能であることを実証する。
論文 参考訳(メタデータ) (2024-02-27T11:52:49Z) - How neural networks learn to classify chaotic time series [77.34726150561087]
本研究では,通常の逆カオス時系列を分類するために訓練されたニューラルネットワークの内部動作について検討する。
入力周期性とアクティベーション周期の関係は,LKCNNモデルの性能向上の鍵となる。
論文 参考訳(メタデータ) (2023-06-04T08:53:27Z) - Parallel Neural Networks in Golang [0.0]
本稿では,並列ニューラルネットワーク(PNN)と新しいプログラミング言語Golangの設計と実装について述べる。
Golangとその固有の並列化サポートは、並列ニューラルネットワークシミュレーションにおいて、シーケンシャルなバリエーションに比べて処理時間が大幅に短縮されていることが証明された。
論文 参考訳(メタデータ) (2023-04-19T11:56:36Z) - Split-Et-Impera: A Framework for the Design of Distributed Deep Learning
Applications [8.434224141580758]
Split-Et-Imperaは、ディープネットワークの解釈可能性の原則に基づいて、ニューラルネットワークのベストスプリットポイントのセットを決定する。
異なるニューラルネットワーク再構成の迅速な評価のための通信認識シミュレーションを実行する。
これは、アプリケーションのサービス要件の品質と、正確性とレイテンシ時間の観点からのパフォーマンスのベストマッチを示唆している。
論文 参考訳(メタデータ) (2023-03-22T13:00:00Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
本稿では,属性の全体的推定に使用できるニューラルネットワーク表現モデルを提案する。
実験の結果,提案するフレームワークは,セルアーキテクチャとディープニューラルネットワーク全体の遅延特性と精度特性を予測できることがわかった。
論文 参考訳(メタデータ) (2022-11-15T10:15:21Z) - Pushing the Efficiency Limit Using Structured Sparse Convolutions [82.31130122200578]
本稿では,画像の固有構造を利用して畳み込みフィルタのパラメータを削減する構造的スパース畳み込み(SSC)を提案する。
我々は、SSCが効率的なアーキテクチャにおける一般的なレイヤ(奥行き、グループ回り、ポイント回りの畳み込み)の一般化であることを示す。
SSCに基づくアーキテクチャは、CIFAR-10、CIFAR-100、Tiny-ImageNet、ImageNet分類ベンチマークのベースラインと比較して、最先端のパフォーマンスを実現している。
論文 参考訳(メタデータ) (2022-10-23T18:37:22Z) - A Temporal Neural Network Architecture for Online Learning [0.6091702876917281]
時間的ニューラルネットワーク(TNN)は、相対スパイク時間として符号化された情報を通信し、処理する。
TNNアーキテクチャを提案し、概念実証として、オンライン教師付き分類のより大きな文脈でTNNの動作を示す。
論文 参考訳(メタデータ) (2020-11-27T17:15:29Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z) - Binarizing MobileNet via Evolution-based Searching [66.94247681870125]
そこで本稿では,MobileNet をバイナライズする際の構築と訓練を容易にするための進化的探索手法を提案する。
ワンショットアーキテクチャ検索フレームワークに着想を得て、グループ畳み込みのアイデアを操り、効率的な1ビット畳み込みニューラルネットワーク(CNN)を設計する。
我々の目標は、グループ畳み込みの最良の候補を探索することで、小さなが効率的なバイナリニューラルアーキテクチャを考案することである。
論文 参考訳(メタデータ) (2020-05-13T13:25:51Z) - Recognizing Long Grammatical Sequences Using Recurrent Networks
Augmented With An External Differentiable Stack [73.48927855855219]
リカレントニューラルネットワーク(RNN)は、シーケンスモデリング、生成、予測に広く使われているディープアーキテクチャである。
RNNは、非常に長いシーケンスに対してあまり一般化せず、多くの重要な時間的処理や時系列予測問題に適用性を制限する。
これらの欠点に対処する方法の1つは、スタックのような外部の異なるメモリ構造とRNNを結合することである。
本稿では,重要なアーキテクチャと状態更新機構を備えたメモリ拡張RNNを改良する。
論文 参考訳(メタデータ) (2020-04-04T14:19:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。