論文の概要: Helix: Algorithm/Architecture Co-design for Accelerating Nanopore Genome
Base-calling
- arxiv url: http://arxiv.org/abs/2008.03107v1
- Date: Tue, 4 Aug 2020 22:17:19 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-03 01:21:40.231352
- Title: Helix: Algorithm/Architecture Co-design for Accelerating Nanopore Genome
Base-calling
- Title(参考訳): helix:ナノホールゲノムベースコールの高速化のためのアルゴリズム/アーキテクチャ共同設計
- Authors: Qian Lou and Sarath Janga and Lei Jiang
- Abstract要約: 最先端のベースコールはディープニューラルネットワーク(DNN)を使用して、ナノ孔シーケンサによって生成された電気信号をデジタルDNAシンボルに変換する。
DNNベースのベースコールは、ナノ孔シークエンシングパイプラインの総実行時間の44.5%を消費する。
本稿では,ナノ孔ベースの呼び出しを効率よく正確に高速化するアルゴリズムとアーキテクチャを共同設計したHelixを提案する。
- 参考スコア(独自算出の注目度): 19.269085366989078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Nanopore genome sequencing is the key to enabling personalized medicine,
global food security, and virus surveillance. The state-of-the-art base-callers
adopt deep neural networks (DNNs) to translate electrical signals generated by
nanopore sequencers to digital DNA symbols. A DNN-based base-caller consumes
$44.5\%$ of total execution time of a nanopore sequencing pipeline. However, it
is difficult to quantize a base-caller and build a power-efficient
processing-in-memory (PIM) to run the quantized base-caller. In this paper, we
propose a novel algorithm/architecture co-designed PIM, Helix, to
power-efficiently and accurately accelerate nanopore base-calling. From
algorithm perspective, we present systematic error aware training to minimize
the number of systematic errors in a quantized base-caller. From architecture
perspective, we propose a low-power SOT-MRAM-based ADC array to process
analog-to-digital conversion operations and improve power efficiency of prior
DNN PIMs. Moreover, we revised a traditional NVM-based dot-product engine to
accelerate CTC decoding operations, and create a SOT-MRAM binary comparator
array to process read voting. Compared to state-of-the-art PIMs, Helix improves
base-calling throughput by $6\times$, throughput per Watt by $11.9\times$ and
per $mm^2$ by $7.5\times$ without degrading base-calling accuracy.
- Abstract(参考訳): ナノホールゲノムシークエンシングは、パーソナライズされた医療、グローバル・フード・セキュリティ、ウイルスの監視を可能にする鍵である。
最先端のベースコールはディープニューラルネットワーク(DNN)を使用して、ナノ孔シーケンサによって生成された電気信号をデジタルDNAシンボルに変換する。
DNNベースのベースコールは、ナノ孔シークエンシングパイプラインの実行時間の合計44.5\%を消費する。
しかし、ベースコールを定量化し、量子化されたベースコールを実行するために電力効率の高い処理インメモリ(PIM)を構築することは困難である。
本稿では,PIMを設計した新しいアルゴリズム,Helixを提案し,ナノ孔ベースの呼び出しを効率よく正確に高速化する。
アルゴリズムの観点から,量子化ベースコールにおける系統的エラー数を最小化するために,系統的エラー認識トレーニングを提案する。
アーキテクチャの観点からは,アナログ-デジタル変換処理を行う低消費電力のSOT-MRAMベースのADCアレイを提案し,従来のDNN PIMの電力効率を向上する。
さらに,従来のNVMベースのドット生成エンジンを改良し,CTC復号処理を高速化し,読み出し投票を行うためのSOT-MRAMバイナリコンパレータアレイを作成する。
最先端のPIMと比較して、Helixはベースコールのスループットを6\times$、Wattあたりのスループットを11.9\times$、$mm^2$を7.5\times$に改善する。
関連論文リスト
- Accurate Mapping of RNNs on Neuromorphic Hardware with Adaptive Spiking Neurons [2.9410174624086025]
我々は、SigmaDelta$-low-pass RNN(lpRNN)を、レートベースのRNNをスパイクニューラルネットワーク(SNN)にマッピングするために提示する。
適応スパイキングニューロンモデルは、$SigmaDelta$-modulationを使って信号を符号化し、正確なマッピングを可能にする。
我々は、Intelのニューロモルフィック研究チップLoihiにおけるlpRNNの実装を実演する。
論文 参考訳(メタデータ) (2024-07-18T14:06:07Z) - ApproxDARTS: Differentiable Neural Architecture Search with Approximate Multipliers [0.24578723416255746]
本稿では、DARTSと呼ばれる一般的な微分可能なニューラルアーキテクチャ探索手法を応用し、近似乗算器を活用可能なニューラルアーキテクチャ探索(NAS)手法であるApproxDARTSを提案する。
ApproxDARTSは10ドル未満のGPU時間で完全なアーキテクチャ検索を実行でき、畳み込み層に近似乗算器を含む競合畳み込みニューラルネットワーク(CNN)を生成する。
論文 参考訳(メタデータ) (2024-04-08T09:54:57Z) - Efficient Dataset Distillation Using Random Feature Approximation [109.07737733329019]
本稿では,ニューラルネットワークガウス過程(NNGP)カーネルのランダム特徴近似(RFA)を用いた新しいアルゴリズムを提案する。
我々のアルゴリズムは、KIP上で少なくとも100倍のスピードアップを提供し、1つのGPUで実行できる。
RFA蒸留 (RFAD) と呼ばれる本手法は, 大規模データセットの精度において, KIP や他のデータセット凝縮アルゴリズムと競合して動作する。
論文 参考訳(メタデータ) (2022-10-21T15:56:13Z) - Braille Letter Reading: A Benchmark for Spatio-Temporal Pattern
Recognition on Neuromorphic Hardware [50.380319968947035]
近年の深層学習手法は,そのようなタスクにおいて精度が向上しているが,従来の組込みソリューションへの実装は依然として計算量が非常に高く,エネルギーコストも高い。
文字読み込みによるエッジにおける触覚パターン認識のための新しいベンチマークを提案する。
フィードフォワードとリカレントスパイキングニューラルネットワーク(SNN)を、サロゲート勾配の時間によるバックプロパゲーションを用いてオフラインでトレーニングし比較し、効率的な推論のためにIntel Loihimorphicチップにデプロイした。
LSTMは14%の精度で繰り返しSNNより優れており、Loihi上での繰り返しSNNは237倍のエネルギーである。
論文 参考訳(メタデータ) (2022-05-30T14:30:45Z) - DNN Training Acceleration via Exploring GPGPU Friendly Sparsity [16.406482603838157]
本稿では、従来のランダムなニューロンやシナプスのドロップアウトを、通常のオンラインの行ベースもしくはタイルベースのドロップアウトパターンに置き換える近似ランダムドロップアウトを提案する。
次に,SGDに基づく探索アルゴリズムを開発し,行ベースあるいはタイルベースのドロップアウトパターンの分布を生成し,潜在的な精度損失を補う。
また,入力特徴図をその感度に基づいて動的にドロップアウトし,前向きおよび後向きのトレーニングアクセラレーションを実現するための感度対応ドロップアウト手法を提案する。
論文 参考訳(メタデータ) (2022-03-11T01:32:03Z) - Mixed Precision Low-bit Quantization of Neural Network Language Models
for Speech Recognition [67.95996816744251]
長期間のメモリリカレントニューラルネットワーク(LSTM-RNN)とトランスフォーマーで表される最先端言語モデル(LM)は、実用アプリケーションではますます複雑で高価なものになりつつある。
現在の量子化法は、均一な精度に基づいており、量子化誤差に対するLMの異なる部分での様々な性能感度を考慮できない。
本稿では,新しい混合精度ニューラルネットワークLM量子化法を提案する。
論文 参考訳(メタデータ) (2021-11-29T12:24:02Z) - Spike time displacement based error backpropagation in convolutional
spiking neural networks [0.6193838300896449]
本稿では,STiDi-BPアルゴリズムを拡張し,より深く,畳み込み型アーキテクチャに応用する。
MNISTとFashion-MNISTの2つのベンチマークに基づく画像分類タスクの評価結果から,このアルゴリズムが深部SNNに適用可能であることを確認した。
後進パスで更新される実数値重みと、フィードフォワードプロセスで使用される2値重みと、その記号と2値重みの2つの重みを持つ畳み込みSNNを考える。
論文 参考訳(メタデータ) (2021-08-31T05:18:59Z) - A quantum algorithm for training wide and deep classical neural networks [72.2614468437919]
勾配勾配勾配による古典的トレーサビリティに寄与する条件は、量子線形系を効率的に解くために必要な条件と一致することを示す。
MNIST画像データセットがそのような条件を満たすことを数値的に示す。
我々は、プールを用いた畳み込みニューラルネットワークのトレーニングに$O(log n)$の実証的証拠を提供する。
論文 参考訳(メタデータ) (2021-07-19T23:41:03Z) - Quantized Neural Networks via {-1, +1} Encoding Decomposition and
Acceleration [83.84684675841167]
本稿では,量子化されたニューラルネットワーク(QNN)をマルチブランチバイナリネットワークに分解するために,-1,+1を用いた新しい符号化方式を提案する。
本稿では,大規模画像分類,オブジェクト検出,セマンティックセグメンテーションにおける提案手法の有効性を検証する。
論文 参考訳(メタデータ) (2021-06-18T03:11:15Z) - Dynamic Pooling Improves Nanopore Base Calling Accuracy [0.0]
ナノ孔シークエンシングでは、DNA分子がシークエンシング孔を通過すると電気信号が測定される。
これまで最も成功したナノホールベース呼び出し者は、畳み込みニューラルネットワーク(cnn)を使用してタスクを実行している。
本論文では,この問題を適応的に調整することで解決するニューラル・ネットワーク・コンポーネントである動的プーリングを提案する。
論文 参考訳(メタデータ) (2021-05-16T21:39:17Z) - Solving Mixed Integer Programs Using Neural Networks [57.683491412480635]
本稿では,mipソルバの2つのキーサブタスクに学習を適用し,高品質なジョイント変数割当を生成し,その割当と最適課題との客観的値の差を限定する。
提案手法は,ニューラルネットワークに基づく2つのコンポーネントであるニューラルダイバーディングとニューラルブランチを構築し,SCIPなどのベースMIPソルバで使用する。
2つのGoogle生産データセットとMIPLIBを含む6つの現実世界データセットに対するアプローチを評価し、それぞれに別々のニューラルネットワークをトレーニングする。
論文 参考訳(メタデータ) (2020-12-23T09:33:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。