A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction
- URL: http://arxiv.org/abs/2008.03157v2
- Date: Fri, 5 Mar 2021 15:11:40 GMT
- Title: A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction
- Authors: Shady Ahmed, Suraj Pawar, Omer San, Adil Rasheed, Mandar Tabib
- Abstract summary: Long short-term memory (LSTM) nudging framework for enhancement of reduced order models (ROMs) of fluid flows utilized noisy measurements for air traffic improvements.
We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements.
In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparseian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We put forth a long short-term memory (LSTM) nudging framework for the
enhancement of reduced order models (ROMs) of fluid flows utilizing noisy
measurements for air traffic improvements. Toward emerging applications of
digital twins in aviation, the proposed approach allows for constructing a
realtime predictive tool for wake-vortex transport and decay systems. We build
on the fact that in realistic application, there are uncertainties in initial
and boundary conditions, model parameters, as well as measurements. Moreover,
conventional nonlinear ROMs based on Galerkin projection (GROMs) suffer from
imperfection and solution instabilities, especially for advection-dominated
flows with slow decay in the Kolmogorov width. In the presented LSTM nudging
(LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and
uncertain state estimates, with sparse Eulerian sensor measurements to provide
more reliable predictions in a dynamical data assimilation framework. We
illustrate our concept by solving a two-dimensional vorticity transport
equation. We investigate the effects of measurements noise and state estimate
uncertainty on the performance of the LSTM-N behavior. We also demonstrate that
it can sufficiently handle different levels of temporal and spatial measurement
sparsity, and offer a huge potential in developing next-generation digital twin
technologies.
Related papers
- Machine learning-enabled velocity model building with uncertainty quantification [0.41942958779358674]
Accurately characterizing migration velocity models is crucial for a wide range of geophysical applications.
Traditional velocity model building methods are powerful but often struggle with the inherent complexities of the inverse problem.
We propose a scalable methodology that integrates generative modeling, in the form of Diffusion networks, with physics-informed summary statistics.
arXiv Detail & Related papers (2024-11-11T01:36:48Z) - Dynamical system prediction from sparse observations using deep neural networks with Voronoi tessellation and physics constraint [12.638698799995815]
We introduce the Dynamic System Prediction from Sparse Observations using Voronoi Tessellation (DSOVT) framework.
By integrating Voronoi tessellations with deep learning models, DSOVT is adept at predicting dynamical systems with sparse, unstructured observations.
Compared to purely data-driven models, our physics-based approach enables the model to learn physical laws within explicitly formulated dynamics.
arXiv Detail & Related papers (2024-08-31T13:43:52Z) - Diffusion-based subsurface multiphysics monitoring and forecasting [4.2193475197905705]
We propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models.
This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties.
Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$$ monitoring.
arXiv Detail & Related papers (2024-07-25T23:04:37Z) - Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - DA-Flow: Dual Attention Normalizing Flow for Skeleton-based Video Anomaly Detection [52.74152717667157]
We propose a lightweight module called Dual Attention Module (DAM) for capturing cross-dimension interaction relationships in-temporal skeletal data.
It employs the frame attention mechanism to identify the most significant frames and the skeleton attention mechanism to capture broader relationships across fixed partitions with minimal parameters and flops.
arXiv Detail & Related papers (2024-06-05T06:18:03Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Reliable Trajectory Prediction and Uncertainty Quantification with Conditioned Diffusion Models [11.308331231957588]
This work introduces the conditioned Vehicle Motion Diffusion (cVMD) model, a novel network architecture for highway trajectory prediction using diffusion models.
Central to the architecture of cVMD is its capacity to perform uncertainty quantification, a feature that is crucial in safety-critical applications.
Experiments show that the proposed architecture achieves competitive trajectory prediction accuracy compared to state-of-the-art models.
arXiv Detail & Related papers (2024-05-23T10:01:39Z) - Uncovering the Missing Pattern: Unified Framework Towards Trajectory
Imputation and Prediction [60.60223171143206]
Trajectory prediction is a crucial undertaking in understanding entity movement or human behavior from observed sequences.
Current methods often assume that the observed sequences are complete while ignoring the potential for missing values.
This paper presents a unified framework, the Graph-based Conditional Variational Recurrent Neural Network (GC-VRNN), which can perform trajectory imputation and prediction simultaneously.
arXiv Detail & Related papers (2023-03-28T14:27:27Z) - A Neural PDE Solver with Temporal Stencil Modeling [44.97241931708181]
Recent Machine Learning (ML) models have shown new promises in capturing important dynamics in high-resolution signals.
This study shows that significant information is often lost in the low-resolution down-sampled features.
We propose a new approach, which combines the strengths of advanced time-series sequence modeling and state-of-the-art neural PDE solvers.
arXiv Detail & Related papers (2023-02-16T06:13:01Z) - Stabilizing Machine Learning Prediction of Dynamics: Noise and
Noise-inspired Regularization [58.720142291102135]
Recent has shown that machine learning (ML) models can be trained to accurately forecast the dynamics of chaotic dynamical systems.
In the absence of mitigating techniques, this technique can result in artificially rapid error growth, leading to inaccurate predictions and/or climate instability.
We introduce Linearized Multi-Noise Training (LMNT), a regularization technique that deterministically approximates the effect of many small, independent noise realizations added to the model input during training.
arXiv Detail & Related papers (2022-11-09T23:40:52Z) - Hybrid Physics and Deep Learning Model for Interpretable Vehicle State
Prediction [75.1213178617367]
We propose a hybrid approach combining deep learning and physical motion models.
We achieve interpretability by restricting the output range of the deep neural network as part of the hybrid model.
The results show that our hybrid model can improve model interpretability with no decrease in accuracy compared to existing deep learning approaches.
arXiv Detail & Related papers (2021-03-11T15:21:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.