Diffusion-based subsurface multiphysics monitoring and forecasting
- URL: http://arxiv.org/abs/2407.18426v2
- Date: Sun, 4 Aug 2024 22:13:16 GMT
- Title: Diffusion-based subsurface multiphysics monitoring and forecasting
- Authors: Xinquan Huang, Fu Wang, Tariq Alkhalifah,
- Abstract summary: We propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models.
This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties.
Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$$ monitoring.
- Score: 4.2193475197905705
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Carbon capture and storage (CCS) plays a crucial role in mitigating greenhouse gas emissions, particularly from industrial outputs. Using seismic monitoring can aid in an accurate and robust monitoring system to ensure the effectiveness of CCS and mitigate associated risks. However, conventional seismic wave equation-based approaches are computationally demanding, which hinders real-time applications. In addition to efficiency, forecasting and uncertainty analysis are not easy to handle using such numerical-simulation-based approaches. To this end, we propose a novel subsurface multiphysics monitoring and forecasting framework utilizing video diffusion models. This approach can generate high-quality representations of CO$2$ evolution and associated changes in subsurface elastic properties. With reconstruction guidance, forecasting and inversion can be achieved conditioned on historical frames and/or observational data. Meanwhile, due to the generative nature of the approach, we can quantify uncertainty in the prediction. Tests based on the Compass model show that the proposed method successfully captured the inherently complex physical phenomena associated with CO$_2$ monitoring, and it can predict and invert the subsurface elastic properties and CO$_2$ saturation with consistency in their evolution.
Related papers
- Physics-guided Active Sample Reweighting for Urban Flow Prediction [75.24539704456791]
Urban flow prediction is a nuanced-temporal modeling that estimates the throughput of transportation services like buses, taxis and ride-driven models.
Some recent prediction solutions bring remedies with the notion of physics-guided machine learning (PGML)
We develop a atized physics-guided network (PN), and propose a data-aware framework Physics-guided Active Sample Reweighting (P-GASR)
arXiv Detail & Related papers (2024-07-18T15:44:23Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
Weather forecasting plays a critical role in various sectors, driving decision-making and risk management.
Traditional methods often struggle to capture the complex dynamics of meteorological systems.
We propose a novel framework designed to address these challenges and enhance the accuracy of weather prediction.
arXiv Detail & Related papers (2024-05-29T08:00:15Z) - Probabilistic Forecasting with Stochastic Interpolants and Föllmer Processes [18.344934424278048]
We propose a framework for probabilistic forecasting of dynamical systems based on generative modeling.
We show that the drift and the diffusion coefficients of this SDE can be adjusted after training, and that a specific choice that minimizes the impact of the estimation error gives a F"ollmer process.
arXiv Detail & Related papers (2024-03-20T16:33:06Z) - Weather Prediction with Diffusion Guided by Realistic Forecast Processes [49.07556359513563]
We introduce a novel method that applies diffusion models (DM) for weather forecasting.
Our method can achieve both direct and iterative forecasting with the same modeling framework.
The flexibility and controllability of our model empowers a more trustworthy DL system for the general weather community.
arXiv Detail & Related papers (2024-02-06T21:28:42Z) - PreDiff: Precipitation Nowcasting with Latent Diffusion Models [28.52267957954304]
We develop a conditional latent diffusion model capable of probabilistic forecasts.
We incorporate an explicit knowledge alignment mechanism to align forecasts with domain-specific physical constraints.
arXiv Detail & Related papers (2023-07-19T19:19:13Z) - Prediction under Latent Subgroup Shifts with High-Dimensional
Observations [30.433078066683848]
We introduce a new approach to prediction in graphical models with latent-shift adaptation.
Our novel form of RPM identifies causal latent structure in the source environment, and adapts properly to predict in the target.
arXiv Detail & Related papers (2023-06-23T12:26:24Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Physics-Informed Gaussian Process Regression for Probabilistic States
Estimation and Forecasting in Power Grids [67.72249211312723]
Real-time state estimation and forecasting is critical for efficient operation of power grids.
PhI-GPR is presented and used for forecasting and estimating the phase angle, angular speed, and wind mechanical power of a three-generator power grid system.
We demonstrate that the proposed PhI-GPR method can accurately forecast and estimate both observed and unobserved states.
arXiv Detail & Related papers (2020-10-09T14:18:31Z) - Stochastically forced ensemble dynamic mode decomposition for
forecasting and analysis of near-periodic systems [65.44033635330604]
We introduce a novel load forecasting method in which observed dynamics are modeled as a forced linear system.
We show that its use of intrinsic linear dynamics offers a number of desirable properties in terms of interpretability and parsimony.
Results are presented for a test case using load data from an electrical grid.
arXiv Detail & Related papers (2020-10-08T20:25:52Z) - A nudged hybrid analysis and modeling approach for realtime wake-vortex
transport and decay prediction [0.0]
Long short-term memory (LSTM) nudging framework for enhancement of reduced order models (ROMs) of fluid flows utilized noisy measurements for air traffic improvements.
We build on the fact that in realistic application, there are uncertainties in initial and boundary conditions, model parameters, as well as measurements.
In the presented LSTM nudging (LSTM-N) approach, we fuse forecasts from a combination of imperfect GROM and uncertain state estimates, with sparseian sensor measurements to provide more reliable predictions in a dynamical data assimilation framework.
arXiv Detail & Related papers (2020-08-05T23:47:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.