Classifying sleep-wake stages through recurrent neural networks using
pulse oximetry signals
- URL: http://arxiv.org/abs/2008.03382v1
- Date: Fri, 7 Aug 2020 21:43:46 GMT
- Title: Classifying sleep-wake stages through recurrent neural networks using
pulse oximetry signals
- Authors: Ramiro Casal, Leandro E. Di Persia, Gast\'on Schlotthauer
- Abstract summary: The regulation of the autonomic nervous system changes with the sleep stages.
We exploit these changes with the aim of classifying the sleep stages in awake or asleep using pulse oximeter signals.
We applied a recurrent neural network to heart rate and peripheral oxygen saturation signals to classify the sleep stage every 30 seconds.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The regulation of the autonomic nervous system changes with the sleep stages
causing variations in the physiological variables. We exploit these changes
with the aim of classifying the sleep stages in awake or asleep using pulse
oximeter signals. We applied a recurrent neural network to heart rate and
peripheral oxygen saturation signals to classify the sleep stage every 30
seconds. The network architecture consists of two stacked layers of
bidirectional gated recurrent units (GRUs) and a softmax layer to classify the
output. In this paper, we used 5000 patients from the Sleep Heart Health Study
dataset. 2500 patients were used to train the network, and two subsets of 1250
were used to validate and test the trained models. In the test stage, the best
result obtained was 90.13% accuracy, 94.13% sensitivity, 80.26% specificity,
92.05% precision, and 84.68% negative predictive value. Further, the Cohen's
Kappa coefficient was 0.74 and the average absolute error percentage to the
actual sleep time was 8.9%. The performance of the proposed network is
comparable with the state-of-the-art algorithms when they use much more
informative signals (except those with EEG).
Related papers
- A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence [0.0]
This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies.
In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023.
Brain waves were the most commonly employed body parameters for sleep staging and disorder studies.
arXiv Detail & Related papers (2024-05-17T11:09:33Z) - Automated Atrial Fibrillation Classification Based on Denoising Stacked
Autoencoder and Optimized Deep Network [1.7403133838762446]
The incidences of atrial fibrillation (AFib) are increasing at a daunting rate worldwide.
For the early detection of the risk of AFib, we have developed an automatic detection system based on deep neural networks.
An end-to-end model is proposed to denoise the electrocardiogram signals using denoising autoencoders (DAE)
arXiv Detail & Related papers (2022-01-26T21:45:48Z) - Osteoporosis Prescreening using Panoramic Radiographs through a Deep
Convolutional Neural Network with Attention Mechanism [65.70943212672023]
Deep convolutional neural network (CNN) with an attention module can detect osteoporosis on panoramic radiographs.
dataset of 70 panoramic radiographs (PRs) from 70 different subjects of age between 49 to 60 was used.
arXiv Detail & Related papers (2021-10-19T00:03:57Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Ensemble of Convolution Neural Networks on Heterogeneous Signals for
Sleep Stage Scoring [63.30661835412352]
This paper explores and compares the convenience of using additional signals apart from electroencephalograms.
The best overall model, an ensemble of Depth-wise Separational Convolutional Neural Networks, has achieved an accuracy of 86.06%.
arXiv Detail & Related papers (2021-07-23T06:37:38Z) - Sleep Staging Based on Serialized Dual Attention Network [0.0]
We propose a deep learning model SDAN based on raw EEG.
It serially combines the channel attention and spatial attention mechanisms to filter and highlight key information.
It achieves excellent results in the N1 sleep stage compared to other methods.
arXiv Detail & Related papers (2021-07-18T13:18:12Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information.
A deep convolutional LSTM neural network is trained for sleep stage classification.
The code evaluation showed impressive results, reaching an accuracy of 86.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss of 0.09.
arXiv Detail & Related papers (2021-07-07T15:38:47Z) - Convolutional Neural Networks for Sleep Stage Scoring on a Two-Channel
EEG Signal [63.18666008322476]
Sleep problems are one of the major diseases all over the world.
Basic tool used by specialists is the Polysomnogram, which is a collection of different signals recorded during sleep.
Specialists have to score the different signals according to one of the standard guidelines.
arXiv Detail & Related papers (2021-03-30T09:59:56Z) - Temporal convolutional networks and transformers for classifying the
sleep stage in awake or asleep using pulse oximetry signals [0.0]
We develop a network architecture with the aim of classifying the sleep stage in awake or asleep using only HR signals from a pulse oximeter.
Transformers are able to model the sequence, learning the transition rules between sleep stages.
The overall accuracy, specificity, sensibility, and Cohen's Kappa coefficient were 90.0%, 94.9%, 78.1%, and 0.73.
arXiv Detail & Related papers (2021-01-29T22:58:33Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.