A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
- URL: http://arxiv.org/abs/2405.11008v2
- Date: Wed, 4 Sep 2024 06:41:37 GMT
- Title: A Systematic Review on Sleep Stage Classification and Sleep Disorder Detection Using Artificial Intelligence
- Authors: Tayab Uddin Wara, Ababil Hossain Fahad, Adri Shankar Das, Md. Mehedi Hasan Shawon,
- Abstract summary: This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies.
In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023.
Brain waves were the most commonly employed body parameters for sleep staging and disorder studies.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Sleep is vital for people's physical and mental health, and sound sleep can help them focus on daily activities. Therefore, a sleep study that includes sleep patterns and sleep disorders is crucial to enhancing our knowledge about individuals' health status. This study aims to provide a comprehensive, systematic review of the recent literature to analyze the different approaches and their outcomes in sleep studies, which includes works on "sleep stages classification" and "sleep disorder detection" using AI. In this review, 183 articles were initially selected from different journals, among which 80 records were enlisted for explicit review, ranging from 2016 to 2023. Brain waves were the most commonly employed body parameters for sleep staging and disorder studies (almost 29% of the research used brain activity signals exclusively, and 77% combined with the other signals). The convolutional neural network (CNN), the most widely used of the 34 distinct artificial intelligence models, comprised 27%. The other models included the long short-term memory (LSTM), support vector machine (SVM), random forest (RF), and recurrent neural network (RNN), which consisted of 11%, 6%, 6%, and 5% sequentially. For performance metrics, accuracy was widely used for a maximum of 83.75% of the cases, the F1 score of 45%, Kappa of 36.25%, Sensitivity of 31.25%, and Specificity of 30% of cases, along with the other metrics. This article would help physicians and researchers get the gist of AI's contribution to sleep studies and the feasibility of their intended work.
Related papers
- What Radio Waves Tell Us about Sleep [34.690382091650314]
We develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep.
We show that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM) and detects sleep apnea (AUROC = 0.88)
The model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders.
arXiv Detail & Related papers (2024-05-20T02:41:21Z) - Insomnia Identification via Electroencephalography [0.0]
An estimated 50 million people worldwide are thought to be affected by insomnia.
This study proposes a method that uses deep learning to automatically identify patients with insomnia.
arXiv Detail & Related papers (2024-02-09T08:59:37Z) - SI-SD: Sleep Interpreter through awake-guided cross-subject Semantic Decoding [5.283755248013948]
We design a novel cognitive neuroscience experiment and collect a comprehensive, well-annotated electroencephalography (EEG) dataset from 134 subjects during both wakefulness and sleep.
We develop SI-SD that enhances sleep semantic decoding through the position-wise alignment of neural latent sequence between wakefulness and sleep.
arXiv Detail & Related papers (2023-09-28T14:06:34Z) - Continual learning benefits from multiple sleep mechanisms: NREM, REM,
and Synaptic Downscaling [51.316408685035526]
Learning new tasks and skills in succession without losing prior learning is a computational challenge for both artificial and biological neural networks.
Here, we investigate how modeling three distinct components of mammalian sleep together affects continual learning in artificial neural networks.
arXiv Detail & Related papers (2022-09-09T13:45:27Z) - Unsupervised Anomaly Detection in 3D Brain MRI using Deep Learning with
Multi-Task Brain Age Prediction [53.122045119395594]
Unsupervised anomaly detection (UAD) in brain MRI with deep learning has shown promising results.
We propose deep learning for UAD in 3D brain MRI considering additional age information.
Based on our analysis, we propose a novel deep learning approach for UAD with multi-task age prediction.
arXiv Detail & Related papers (2022-01-31T09:39:52Z) - SOUL: An Energy-Efficient Unsupervised Online Learning Seizure Detection
Classifier [68.8204255655161]
Implantable devices that record neural activity and detect seizures have been adopted to issue warnings or trigger neurostimulation to suppress seizures.
For an implantable seizure detection system, a low power, at-the-edge, online learning algorithm can be employed to dynamically adapt to neural signal drifts.
SOUL was fabricated in TSMC's 28 nm process occupying 0.1 mm2 and achieves 1.5 nJ/classification energy efficiency, which is at least 24x more efficient than state-of-the-art.
arXiv Detail & Related papers (2021-10-01T23:01:20Z) - Sleep syndromes onset detection based on automatic sleep staging
algorithm [0.0]
A Fast Fourier Transform is applied to 30 seconds long epochs of EEG recordings to provide localized time-frequency information.
A deep convolutional LSTM neural network is trained for sleep stage classification.
The code evaluation showed impressive results, reaching an accuracy of 86.43, precision of 77.76, recall of 93,32, F1-score of 89.12 with the final mean false error loss of 0.09.
arXiv Detail & Related papers (2021-07-07T15:38:47Z) - MSED: a multi-modal sleep event detection model for clinical sleep
analysis [62.997667081978825]
We designed a single deep neural network architecture to jointly detect sleep events in a polysomnogram.
The performance of the model was quantified by F1, precision, and recall scores, and by correlating index values to clinical values.
arXiv Detail & Related papers (2021-01-07T13:08:44Z) - Automatic detection of microsleep episodes with deep learning [55.41644538483948]
Brief fragments of sleep shorter than 15 s are defined as microsleep episodes (MSEs)
maintenance of wakefulness test (MWT) is often used in a clinical setting to assess vigilance.
MSEs are mostly not considered in the absence of established scoring criteria defining MSEs.
We aimed for automatic detection of MSEs with machine learning based on raw EEG and EOG data as input.
arXiv Detail & Related papers (2020-09-07T11:38:40Z) - Patch-based Brain Age Estimation from MR Images [64.66978138243083]
Brain age estimation from Magnetic Resonance Images (MRI) derives the difference between a subject's biological brain age and their chronological age.
Early detection of neurodegeneration manifesting as a higher brain age can potentially facilitate better medical care and planning for affected individuals.
We develop a new deep learning approach that uses 3D patches of the brain as well as convolutional neural networks (CNNs) to develop a localised brain age estimator.
arXiv Detail & Related papers (2020-08-29T11:50:37Z) - Classifying sleep-wake stages through recurrent neural networks using
pulse oximetry signals [0.0]
The regulation of the autonomic nervous system changes with the sleep stages.
We exploit these changes with the aim of classifying the sleep stages in awake or asleep using pulse oximeter signals.
We applied a recurrent neural network to heart rate and peripheral oxygen saturation signals to classify the sleep stage every 30 seconds.
arXiv Detail & Related papers (2020-08-07T21:43:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.