論文の概要: A Comparison of Machine Learning Algorithms Applied to American
Legislature Polarization
- arxiv url: http://arxiv.org/abs/2008.04072v1
- Date: Sat, 18 Jul 2020 22:28:26 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-09 06:08:18.882403
- Title: A Comparison of Machine Learning Algorithms Applied to American
Legislature Polarization
- Title(参考訳): アメリカの議会分極に適用される機械学習アルゴリズムの比較
- Authors: Gabriel Mersy, Vincent Santore, Isaac Rand, Corrine Kleinman, Grant
Wilson, Jason Bonsall, Tyler Edwards
- Abstract要約: 本稿では,3つの異なる機械学習アルゴリズムを実験的に比較し,州議会分極の測定に新たなアプローチを提案する。
その結果, ニューラルネットワークの回帰は, サポートベクターマシンと通常最小二乗回帰の両方と比較して, 最良の結果であることが示唆された。
- 参考スコア(独自算出の注目度): 5.936652393309939
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a novel approach to the measurement of American state legislature
polarization with an experimental comparison of three different machine
learning algorithms. Our approach strictly relies on public data sources and
open source software. The results suggest that artificial neural network
regression has the best outcome compared to both support vector machine and
ordinary least squares regression in the prediction of both state House and
state Senate legislature polarization. In addition to the technical outcomes of
our study, broader implications are assessed as a means of highlighting the
importance of accessible information for the higher purpose of promoting civic
responsibility.
- Abstract(参考訳): 本稿では,3つの異なる機械学習アルゴリズムを実験的に比較して,米国議会の偏光を測定する新しい手法を提案する。
当社のアプローチは,公開データソースとオープンソースソフトウェアに厳密に依存しています。
その結果, ニューラルネットワークの回帰は, 州議会と州議会の偏極予測において, 支持ベクトルマシンと通常最小二乗回帰の両方と比較して, 最良の結果であることが示唆された。
本研究の技術的成果に加えて,市民責任の促進を目的とした,アクセス可能な情報の重要性を強調する手段として,幅広い意味が評価されている。
関連論文リスト
- Sequential Manipulation Against Rank Aggregation: Theory and Algorithm [119.57122943187086]
脆弱なデータ収集プロセスに対するオンライン攻撃を活用します。
ゲーム理論の観点からは、対決シナリオは分布的に堅牢なゲームとして定式化される。
提案手法は,ランクアグリゲーション手法の結果を逐次的に操作する。
論文 参考訳(メタデータ) (2024-07-02T03:31:21Z) - Relevance-aware Algorithmic Recourse [3.6141428739228894]
アルゴリズムのリコースは、予測モデルによる決定を明確にするためのツールとして現れます。
現在のアルゴリズム的リコース法では、すべてのドメイン値が等しく扱われるが、現実の環境では非現実的である。
本稿では、回帰タスクにアルゴリズム・リコースを適用する際に、関連性の概念を活用する新しいフレームワーク、Relevance-Aware Algorithmic Recourse (RAAR)を提案する。
論文 参考訳(メタデータ) (2024-05-29T13:25:49Z) - Minimax Optimal Transfer Learning for Kernel-based Nonparametric
Regression [18.240776405802205]
本稿では,非パラメトリック回帰の文脈における伝達学習問題について考察する。
目的は、実用性と理論的保証の間のギャップを埋めることである。
論文 参考訳(メタデータ) (2023-10-21T10:55:31Z) - Performance Evaluation and Comparison of a New Regression Algorithm [4.125187280299247]
新たに提案した回帰アルゴリズムの性能を,従来の4つの機械学習アルゴリズムと比較した。
GitHubリポジトリにソースコードを提供したので、読者は結果の複製を自由にできます。
論文 参考訳(メタデータ) (2023-06-15T13:01:16Z) - Prediction-Powered Inference [68.97619568620709]
予測を用いた推論は、実験データセットに機械学習システムからの予測を補足した場合に有効な統計的推論を行うためのフレームワークである。
このフレームワークは、手段、量子、線形およびロジスティック回帰係数などの量に対して証明可能な信頼区間を計算するための単純なアルゴリズムを生成する。
予測による推論により、研究者は機械学習を使用して、より有効な、よりデータ効率の高い結論を導き出すことができる。
論文 参考訳(メタデータ) (2023-01-23T18:59:28Z) - Understanding Self-Predictive Learning for Reinforcement Learning [61.62067048348786]
強化学習のための自己予測学習の学習ダイナミクスについて検討する。
本稿では,2つの表現を同時に学習する新しい自己予測アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-12-06T20:43:37Z) - Evaluating Machine Unlearning via Epistemic Uncertainty [78.27542864367821]
本研究では,不確実性に基づく機械学習アルゴリズムの評価を行う。
これは私たちの最良の知識の一般的な評価の最初の定義です。
論文 参考訳(メタデータ) (2022-08-23T09:37:31Z) - Decision-makers Processing of AI Algorithmic Advice: Automation Bias
versus Selective Adherence [0.0]
主な懸念は、アルゴリズムに対する人間の過度な信頼は、人間とアルゴリズムの相互作用に新しいバイアスをもたらすことである。
第2の懸念は、意思決定者が既存の信念やステレオタイプと一致した場合、アルゴリズム的なアドバイスを選択的に採用する傾向にある。
オランダにおける学校教師の雇用に関する決定におけるアルゴリズム的アドバイスの使用をシミュレートする2つの研究を通して、これらを評価する。
選択的、偏りのある遵守の私たちの発見は、公共部門でアルゴリズムの使用を推し進めた中立性の約束です。
論文 参考訳(メタデータ) (2021-03-03T13:10:50Z) - Coping with Mistreatment in Fair Algorithms [1.2183405753834557]
教師付き学習環境におけるアルゴリズムの公平性を検討し,等価機会指標の分類器最適化の効果を検討する。
このバイアスを軽減するための概念的にシンプルな方法を提案する。
提案手法を厳密に解析し,その効果を示す実世界データセット上で評価する。
論文 参考訳(メタデータ) (2021-02-22T03:26:06Z) - Hierarchical Bi-Directional Self-Attention Networks for Paper Review
Rating Recommendation [81.55533657694016]
本稿では,階層型双方向自己注意ネットワークフレームワーク(HabNet)を提案する。
具体的には、文エンコーダ(レベル1)、レビュー内エンコーダ(レベル2)、レビュー間エンコーダ(レベル3)の3つのレベルで、論文レビューの階層構造を利用する。
我々は、最終的な受理決定を行う上で有用な予測者を特定することができ、また、数値的なレビュー評価とレビュアーが伝えるテキストの感情の不整合を発見するのに役立てることができる。
論文 参考訳(メタデータ) (2020-11-02T08:07:50Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。