Quantum Entangled-Probe Scattering Theory
- URL: http://arxiv.org/abs/2008.04328v3
- Date: Sun, 11 Jul 2021 23:40:10 GMT
- Title: Quantum Entangled-Probe Scattering Theory
- Authors: Abu Ashik Md Irfan, Patrick Blackstone, Roger Pynn and Gerardo Ortiz
- Abstract summary: We develop an entangled-probe scattering theory that extends the scope of standard scattering approaches.
We argue that these probes may be revolutionary in studying entangled matter such as unconventional phases of strongly correlated systems.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop an entangled-probe scattering theory, including quantum detection,
that extends the scope of standard scattering approaches. We argue that these
probes may be revolutionary in studying entangled matter such as unconventional
phases of strongly correlated systems. Our presentation focuses on a neutron
beam probe that is mode-entangled in spin and path as is experimentally
realized in [1], although similar ideas also apply to photon probes. We
generalize the traditional van Hove theory [2] whereby the response is written
as a properly-crafted combination of two-point correlation functions. Tuning
the probe's entanglement length allows us to interrogate spatial scales of
interest by analyzing interference patterns in the differential cross-section.
Remarkably, for a spin dimer target we find that the typical Young-like
interference pattern observed if the target state is un-entangled gets quantum
erased when that state becomes maximally entangled.
Related papers
- Interference in quantum field theory: detecting ghosts with phases [0.0]
We consider the interaction of two charges via a mediating quantum field and the resulting interference pattern in the Lorenz gauge.
Using the Heisenberg picture, we propose that detecting relative phases or entanglement between two charges in an interference experiment is equivalent to accessing empirically the gauge degrees of freedom.
arXiv Detail & Related papers (2022-07-22T21:39:30Z) - Tunneling Gravimetry [58.80169804428422]
We examine the prospects of utilizing matter-wave Fabry-P'erot interferometers for enhanced inertial sensing applications.
Our study explores such tunneling-based sensors for the measurement of accelerations in two configurations.
arXiv Detail & Related papers (2022-05-19T09:22:11Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Quantum particle across Grushin singularity [77.34726150561087]
We study the phenomenon of transmission across the singularity that separates the two half-cylinders.
All the local realisations of the free (Laplace-Beltrami) quantum Hamiltonian are examined as non-equivalent protocols of transmission/reflection.
This allows to comprehend the distinguished status of the so-called bridging' transmission protocol previously identified in the literature.
arXiv Detail & Related papers (2020-11-27T12:53:23Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Non-Markovian decoherence dynamics of the hybrid quantum system with a
cavity strongly coupling to a spin ensemble: a master equation approach [1.8492669447784602]
We show how the decoherence induced by the inhomogeneous broadening is suppressed in the strong-coupling regime.
We also investigate the two-time correlations in this system to further show how quantum fluctuations manifest quantum memory.
arXiv Detail & Related papers (2020-06-29T14:13:59Z) - Phase space theory for open quantum systems with local and collective
dissipative processes [0.0]
We investigate driven dissipative quantum dynamics of an ensemble of two-level systems given by a Markovian master equation with collective and noncollective dissipators.
Our results expose, utilize and promote pioneered techniques in the context of laser theory.
arXiv Detail & Related papers (2020-06-05T07:22:02Z) - Theory of waveguide-QED with moving emitters [68.8204255655161]
We study a system composed by a waveguide and a moving quantum emitter in the single excitation subspace.
We first characterize single-photon scattering off a single moving quantum emitter, showing both nonreciprocal transmission and recoil-induced reduction of the quantum emitter motional energy.
arXiv Detail & Related papers (2020-03-20T12:14:10Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.