Safe and Effective Picking Paths in Clutter given Discrete Distributions
of Object Poses
- URL: http://arxiv.org/abs/2008.04465v1
- Date: Tue, 11 Aug 2020 00:52:03 GMT
- Title: Safe and Effective Picking Paths in Clutter given Discrete Distributions
of Object Poses
- Authors: Rui Wang, Chaitanya Mitash, Shiyang Lu, Daniel Boehm, Kostas E. Bekris
- Abstract summary: One approach is to perform object pose estimation and use the most likely candidate pose per object to pick the target without collisions.
This work proposes first a perception process for 6D pose estimation, which returns a discrete distribution of object poses in a scene.
Then, an open-loop planning pipeline is proposed to return safe and effective solutions for moving a robotic arm to pick.
- Score: 16.001980921287704
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Picking an item in the presence of other objects can be challenging as it
involves occlusions and partial views. Given object models, one approach is to
perform object pose estimation and use the most likely candidate pose per
object to pick the target without collisions. This approach, however, ignores
the uncertainty of the perception process both regarding the target's and the
surrounding objects' poses. This work proposes first a perception process for
6D pose estimation, which returns a discrete distribution of object poses in a
scene. Then, an open-loop planning pipeline is proposed to return safe and
effective solutions for moving a robotic arm to pick, which (a) minimizes the
probability of collision with the obstructing objects; and (b) maximizes the
probability of reaching the target item. The planning framework models the
challenge as a stochastic variant of the Minimum Constraint Removal (MCR)
problem. The effectiveness of the methodology is verified given both simulated
and real data in different scenarios. The experiments demonstrate the
importance of considering the uncertainty of the perception process in terms of
safe execution. The results also show that the methodology is more effective
than conservative MCR approaches, which avoid all possible object poses
regardless of the reported uncertainty.
Related papers
- End-to-End Probabilistic Geometry-Guided Regression for 6DoF Object Pose Estimation [5.21401636701889]
State-of-the-art 6D object pose estimators directly predict an object pose given an object observation.
We reformulate the state-of-the-art algorithm GDRNPP and introduce EPRO-GDR.
Our solution shows that predicting a pose distribution instead of a single pose can improve state-of-the-art single-view pose estimation.
arXiv Detail & Related papers (2024-09-18T09:11:31Z) - Embodied Uncertainty-Aware Object Segmentation [38.52448300879023]
We introduce uncertainty-aware object instance segmentation (UncOS) and demonstrate its usefulness for embodied interactive segmentation.
We obtain a set of region-factored segmentation hypotheses together with confidence estimates by making multiple queries of large pre-trained models.
The output can also serve as input to a belief-driven process for selecting robot actions to perturb the scene to reduce ambiguity.
arXiv Detail & Related papers (2024-08-08T21:29:22Z) - Counterfactual Reasoning for Multi-Label Image Classification via Patching-Based Training [84.95281245784348]
Overemphasizing co-occurrence relationships can cause the overfitting issue of the model.
We provide a causal inference framework to show that the correlative features caused by the target object and its co-occurring objects can be regarded as a mediator.
arXiv Detail & Related papers (2024-04-09T13:13:24Z) - Rigidity-Aware Detection for 6D Object Pose Estimation [60.88857851869196]
Most recent 6D object pose estimation methods first use object detection to obtain 2D bounding boxes before actually regressing the pose.
We propose a rigidity-aware detection method exploiting the fact that, in 6D pose estimation, the target objects are rigid.
Key to the success of our approach is a visibility map, which we propose to build using a minimum barrier distance between every pixel in the bounding box and the box boundary.
arXiv Detail & Related papers (2023-03-22T09:02:54Z) - H-SAUR: Hypothesize, Simulate, Act, Update, and Repeat for Understanding
Object Articulations from Interactions [62.510951695174604]
"Hypothesize, Simulate, Act, Update, and Repeat" (H-SAUR) is a probabilistic generative framework that generates hypotheses about how objects articulate given input observations.
We show that the proposed model significantly outperforms the current state-of-the-art articulated object manipulation framework.
We further improve the test-time efficiency of H-SAUR by integrating a learned prior from learning-based vision models.
arXiv Detail & Related papers (2022-10-22T18:39:33Z) - Ki-Pode: Keypoint-based Implicit Pose Distribution Estimation of Rigid
Objects [1.209625228546081]
We propose a novel pose distribution estimation method.
An implicit formulation of the probability distribution over object pose is derived from an intermediary representation of an object as a set of keypoints.
The method has been evaluated on the task of rotation distribution estimation on the YCB-V and T-LESS datasets.
arXiv Detail & Related papers (2022-09-20T11:59:05Z) - Suspected Object Matters: Rethinking Model's Prediction for One-stage
Visual Grounding [93.82542533426766]
We propose a Suspected Object Transformation mechanism (SOT) to encourage the target object selection among the suspected ones.
SOT can be seamlessly integrated into existing CNN and Transformer-based one-stage visual grounders.
Extensive experiments demonstrate the effectiveness of our proposed method.
arXiv Detail & Related papers (2022-03-10T06:41:07Z) - SafePicking: Learning Safe Object Extraction via Object-Level Mapping [19.502587411252946]
We present a system, SafePicking, that integrates object-level mapping and learning-based motion planning.
Planning is done by learning a deep Q-network that receives observations of predicted poses and a depth-based heightmap to output a motion trajectory.
Our results show that the observation fusion of poses and depth-sensing gives both better performance and robustness to the model.
arXiv Detail & Related papers (2022-02-11T18:55:10Z) - Slender Object Detection: Diagnoses and Improvements [74.40792217534]
In this paper, we are concerned with the detection of a particular type of objects with extreme aspect ratios, namely textbfslender objects.
For a classical object detection method, a drastic drop of $18.9%$ mAP on COCO is observed, if solely evaluated on slender objects.
arXiv Detail & Related papers (2020-11-17T09:39:42Z) - I Like to Move It: 6D Pose Estimation as an Action Decision Process [53.63776807432945]
Object pose estimation is an integral part of robot vision and AR.
Previous 6D pose retrieval pipelines treat the problem either as a regression task or discretize the pose space to classify.
We change this paradigm and reformulate the problem as an action decision process where an initial pose is updated in incremental discrete steps.
A neural network estimates likely moves from a single RGB image iteratively and determines so an acceptable final pose.
arXiv Detail & Related papers (2020-09-26T20:05:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.