論文の概要: Keypoint Autoencoders: Learning Interest Points of Semantics
- arxiv url: http://arxiv.org/abs/2008.04502v1
- Date: Tue, 11 Aug 2020 03:43:18 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 11:45:39.765959
- Title: Keypoint Autoencoders: Learning Interest Points of Semantics
- Title(参考訳): keypoint autoencoders: セマンティクスの関心点を学ぶ
- Authors: Ruoxi Shi, Zhengrong Xue, Xinyang Li
- Abstract要約: キーポイント検出のための教師なし学習手法であるキーポイントオートエンコーダを提案する。
キーポイントから元のポイントクラウドへの再構成を強制することで、疎いセマンティックキーポイントの選択を奨励する。
選択したキーポイントの特異性を示すために、スパースキーポイントで形状を分類する下流タスクを行う。
- 参考スコア(独自算出の注目度): 4.551313396927381
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Understanding point clouds is of great importance. Many previous methods
focus on detecting salient keypoints to identity structures of point clouds.
However, existing methods neglect the semantics of points selected, leading to
poor performance on downstream tasks. In this paper, we propose Keypoint
Autoencoder, an unsupervised learning method for detecting keypoints. We
encourage selecting sparse semantic keypoints by enforcing the reconstruction
from keypoints to the original point cloud. To make sparse keypoint selection
differentiable, Soft Keypoint Proposal is adopted by calculating weighted
averages among input points. A downstream task of classifying shape with sparse
keypoints is conducted to demonstrate the distinctiveness of our selected
keypoints. Semantic Accuracy and Semantic Richness are proposed and our method
gives competitive or even better performance than state of the arts on these
two metrics.
- Abstract(参考訳): ポイントクラウドを理解することが非常に重要です。
従来の多くの手法は、点雲のアイデンティティ構造に対する有意なキーポイントの検出に重点を置いていた。
しかし、既存のメソッドは選択されたポイントの意味を無視し、下流タスクのパフォーマンスが低下する。
本稿では,キーポイント検出のための教師なし学習手法であるkeypoint autoencoderを提案する。
キーポイントから元のポイントクラウドへの再構成を強制することで、疎いセマンティックキーポイントの選択を奨励する。
スパースキーポイント選択を微分可能にするために、入力ポイント間の重み付け平均を計算することでソフトキーポイント提案を採用する。
選択したキーポイントの特異性を示すために、スパースキーポイントで形状を分類する下流タスクを行う。
意味的正確性と意味的豊かさが提案され,この2つの指標における最先端技術よりも,競争的,あるいはさらに優れたパフォーマンスが得られている。
関連論文リスト
- GMM-IKRS: Gaussian Mixture Models for Interpretable Keypoint Refinement and Scoring [9.322937309882022]
キーポイントには、品質に応じてスコアをランク付けできるスコアが付属する。
学習されたキーポイントは手作りのものよりも優れた特性を示すことが多いが、それらのスコアは容易に解釈できない。
本稿では,どの手法でも抽出したキーポイントを解釈可能なスコアで特徴付けることができるフレームワークを提案する。
論文 参考訳(メタデータ) (2024-08-30T09:39:59Z) - Meta-Point Learning and Refining for Category-Agnostic Pose Estimation [46.98479393474727]
Category-Agnostic pose Estimation (CAPE) は、キーポイントを付加したいくつかのサポートイメージが与えられた場合、任意のクラスのキーポイントを予測することを目的としている。
このような潜在的なキーポイント(メタポイント)に基づくCAPEのための新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-20T14:54:33Z) - SC3K: Self-supervised and Coherent 3D Keypoints Estimation from Rotated,
Noisy, and Decimated Point Cloud Data [17.471342278936365]
そこで本研究では,任意のオブジェクトカテゴリからキーポイントを推定する手法を提案する。
我々は,キーポイント推定のための自己指導型トレーニング戦略を提案することで,これらのデシダータを実現する。
提案手法によって推定されるキーポイントと最先端の教師なしアプローチのキーポイントを比較した。
論文 参考訳(メタデータ) (2023-08-10T08:10:01Z) - D-Net: Learning for Distinctive Point Clouds by Self-Attentive Point
Searching and Learnable Feature Fusion [48.57170130169045]
我々は,自己注意点探索と学習可能な特徴融合に基づいて,特徴点雲を学習するためのD-Netを提案する。
各特徴点集合に対してコンパクトな特徴表現を生成するために,その特徴を抽出するために,積み重ねられた自己ゲート畳み込みを提案する。
その結果、学習した点雲の区別分布は、同じクラスのオブジェクトと高度に一致し、他のクラスのオブジェクトと異なることが明らかとなった。
論文 参考訳(メタデータ) (2023-05-10T02:19:00Z) - Point-Teaching: Weakly Semi-Supervised Object Detection with Point
Annotations [81.02347863372364]
本稿では,弱い半教師付きオブジェクト検出フレームワークであるPoint-Teachingを提案する。
具体的には,ポイントアノテート画像の擬似ラベルを生成するためのハンガリーの点マッチング手法を提案する。
そこで本研究では,不整合点の影響を低減するため,単純なyet- effective data augmentation(ポイント誘導コピーペースト)を提案する。
論文 参考訳(メタデータ) (2022-06-01T07:04:38Z) - From Keypoints to Object Landmarks via Self-Training Correspondence: A
novel approach to Unsupervised Landmark Discovery [37.78933209094847]
本稿ではオブジェクトランドマーク検出器の教師なし学習のための新しいパラダイムを提案する。
我々はLS3D、BBCPose、Human3.6M、PennActionなどの難解なデータセットに対して本手法の有効性を検証した。
論文 参考訳(メタデータ) (2022-05-31T15:44:29Z) - Object Localization under Single Coarse Point Supervision [107.46800858130658]
本稿では,粗い点アノテーションを用いたPOL手法を提案する。
CPRは、ポイントバッグを構築し、セマンティック関連点を選択し、マルチインスタンス学習(MIL)を通してセマンティックセンターポイントを生成する。
このようにして、CPRは、粗い点監督の下で高性能オブジェクトローカライザのトレーニングを保証する、弱い制御された進化手順を定義する。
論文 参考訳(メタデータ) (2022-03-17T14:14:11Z) - Few-shot Keypoint Detection with Uncertainty Learning for Unseen Species [28.307200505494126]
本稿では,様々な種類のキーポイントを検出可能な汎用Few-shot Keypoint Detection (FSKD) パイプラインを提案する。
FSKDは主および補助的キーポイント表現学習、類似性学習、キーポイントローカライゼーションを含む。
FSKDが未確認種に対する新規キーポイント検出および(ii)FGVRおよび(iii)Semantic Alignment(SA)下流タスクに対する有効性を示した。
論文 参考訳(メタデータ) (2021-12-12T08:39:47Z) - Accurate Grid Keypoint Learning for Efficient Video Prediction [87.71109421608232]
キーポイントベースのビデオ予測手法は、トレーニングやデプロイメントにおいて、かなりの計算資源を消費することができる。
本稿では,長期的効率的な映像予測のための頑健で説明可能な中間キーポイント表現を目的とした,新しいグリッドキーポイント学習フレームワークを設計する。
提案手法は,計算資源の98%以上を節約しつつ,最先端のビデオ予測手法よりも優れていた。
論文 参考訳(メタデータ) (2021-07-28T05:04:30Z) - Unsupervised Learning of Category-Specific Symmetric 3D Keypoints from
Point Sets [71.84892018102465]
本稿では,未知のカテゴリから,対象物の3次元点群を不一致に集めて,カテゴリ固有の3Dキーポイントを教師なしで学習することを目的とする。
私たちの知る限りでは、このようなキーポイントを直接3Dポイントクラウドから学ぶための最初の作業です。
論文 参考訳(メタデータ) (2020-03-17T10:28:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。