論文の概要: Planimation
- arxiv url: http://arxiv.org/abs/2008.04600v1
- Date: Tue, 11 Aug 2020 09:32:24 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 11:45:59.633662
- Title: Planimation
- Title(参考訳): プランテーション
- Authors: Gang Chen, Yi Ding, Hugo Edwards, Chong Hin Chau, Sai Hou, Grace
Johnson, Mohammed Sharukh Syed, Haoyuan Tang, Yue Wu, Ye Yan, Gil Tidhar and
Nir Lipovetzky
- Abstract要約: Planimationは、PDDLで指定された計画問題のシーケンシャルな解決策を視覚化するモジュール式でオープンソースのフレームワークである。
本稿では,任意の初期状態とベンチマークの目標のアニメーションを1つのプロファイルで合成するのに十分な,PDDLのような事前宣言型アニメーションプロファイル仕様を提案する。
- 参考スコア(独自算出の注目度): 13.788067633845356
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Planimation is a modular and extensible open source framework to visualise
sequential solutions of planning problems specified in PDDL. We introduce a
preliminary declarative PDDL-like animation profile specification, expressive
enough to synthesise animations of arbitrary initial states and goals of a
benchmark with just a single profile.
- Abstract(参考訳): Planimationは、PDDLで指定された計画問題のシーケンシャルな解決策を視覚化する、モジュラーで拡張可能なオープンソースフレームワークである。
任意の初期状態と目標のアニメーションを単一のプロファイルで合成するのに十分な表現力を持つ,事前宣言型pddlライクなアニメーションプロファイル仕様を導入する。
関連論文リスト
- UniAnimate: Taming Unified Video Diffusion Models for Consistent Human Image Animation [53.16986875759286]
We present a UniAnimate framework to enable efficient and long-term human video generation。
我々は、姿勢案内やノイズビデオとともに参照画像を共通の特徴空間にマッピングする。
また、ランダムノイズ入力と第1フレーム条件入力をサポートする統一ノイズ入力を提案する。
論文 参考訳(メタデータ) (2024-06-03T10:51:10Z) - Zero-shot High-fidelity and Pose-controllable Character Animation [89.74818983864832]
イメージ・ツー・ビデオ(I2V)生成は、単一の画像からビデオシーケンスを作成することを目的としている。
既存のアプローチは、キャラクターの外観の不整合と細部保存の貧弱さに悩まされている。
文字アニメーションのための新しいゼロショットI2VフレームワークPoseAnimateを提案する。
論文 参考訳(メタデータ) (2024-04-21T14:43:31Z) - Video-Driven Animation of Neural Head Avatars [3.5229503563299915]
高品質なニューラル3Dヘッドモデルの映像駆動型アニメーションに対する新しいアプローチを提案する。
本研究では、個人に依存しない表現特徴をパーソナライズされたアニメーションパラメータに翻訳できるLSTMベースのアニメーションネットワークを提案する。
論文 参考訳(メタデータ) (2024-03-07T10:13:48Z) - Real-time Animation Generation and Control on Rigged Models via Large
Language Models [50.034712575541434]
本稿では,自然言語入力を用いたリップモデル上でのリアルタイムアニメーション制御と生成のための新しい手法を提案する。
大規模言語モデル(LLM)をUnityに組み込んで構造化テキストを出力し、多種多様なリアルなアニメーションに解析する。
論文 参考訳(メタデータ) (2023-10-27T01:36:35Z) - AnimateDiff: Animate Your Personalized Text-to-Image Diffusion Models
without Specific Tuning [92.33690050667475]
AnimateDiffは、モデル固有のチューニングを必要とせずに、パーソナライズされたT2Iモデルをアニメーションするためのフレームワークである。
我々は,AnimateDiffの軽量微調整技術であるMotionLoRAを提案する。
その結果,これらのモデルが視覚的品質と動きの多様性を保ちながら,時間的にスムーズなアニメーションクリップを生成するのに有効であることが示唆された。
論文 参考訳(メタデータ) (2023-07-10T17:34:16Z) - Learning Data-Driven Vector-Quantized Degradation Model for Animation
Video Super-Resolution [59.71387128485845]
アニメーションビデオの特徴を探求し、より実用的なアニメーションVSRモデルのための実世界のアニメーションデータの豊富な事前情報を活用する。
本稿では,グローバルな構造から局所的な詳細を分解する,マルチスケールなベクトル量子化分解モデルを提案する。
先行データを抽出するために、リッチコンテンツリアルアニメーション低品質(RAL)ビデオデータセットを収集する。
論文 参考訳(メタデータ) (2023-03-17T08:11:14Z) - AnimeRun: 2D Animation Visual Correspondence from Open Source 3D Movies [98.65469430034246]
既存の2次元漫画のデータセットは、単純なフレーム構成と単調な動きに悩まされている。
我々は,オープンソースの3D映画を2Dスタイルのフルシーンに変換することによって,新しい2Dアニメーション視覚対応データセットAnimeRunを提案する。
分析の結果,提案したデータセットは画像合成において実際のアニメに似るだけでなく,既存のデータセットと比較してよりリッチで複雑な動きパターンを持つことがわかった。
論文 参考訳(メタデータ) (2022-11-10T17:26:21Z) - SketchBetween: Video-to-Video Synthesis for Sprite Animation via
Sketches [0.9645196221785693]
2Dアニメーションは、キャラクター、エフェクト、バックグラウンドアートに使用されるゲーム開発において一般的な要素である。
アニメーションの自動化アプローチは存在するが、アニメーションを念頭に置いて設計されている。
本稿では,アニメーションの標準的なワークフローにより密着した問題定式化を提案する。
論文 参考訳(メタデータ) (2022-09-01T02:43:19Z) - A Robust Interactive Facial Animation Editing System [0.0]
直感的な制御パラメータの集合から顔のアニメーションを簡単に編集するための学習に基づく新しいアプローチを提案する。
我々は、制御パラメータを結合係数列にマップする分解能保存完全畳み込みニューラルネットワークを使用している。
提案システムは頑丈で,非専門ユーザからの粗大で誇張された編集を処理できる。
論文 参考訳(メタデータ) (2020-07-18T08:31:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。