Assembled arrays of Rydberg-interacting atoms
- URL: http://arxiv.org/abs/2008.04867v1
- Date: Tue, 11 Aug 2020 17:18:42 GMT
- Title: Assembled arrays of Rydberg-interacting atoms
- Authors: Malte Schlosser, Daniel Ohl de Mello, Dominik Sch\"affner, Tilman
Preuschoff, Lars Kohfahl, Gerhard Birkl
- Abstract summary: We demonstrate the first realization of Rydberg excitations and controlled interactions in microlens-generated multisite trap arrays of reconfigurable geometry.
We characterize the simultaneous coherent excitation of non-interacting atom clusters for the state $mathrm57D_5/2$ and analyze the experimental parameters and limitations.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Assembled arrays of individual atoms with Rydberg-mediated interactions
provide a powerful platform for the simulation of many-body spin Hamiltonians
as well as the implementation of universal gate-based quantum information
processing. We demonstrate the first realization of Rydberg excitations and
controlled interactions in microlens-generated multisite trap arrays of
reconfigurable geometry. We utilize atom-by-atom assembly for the deterministic
preparation of pre-defined 2D structures of rubidium Rydberg atoms with exactly
known mutual separations and selectable interaction strength. By adapting the
geometry and the addressed Rydberg state, a parameter regime spanning from weak
interactions to strong coupling can be accessed. We characterize the
simultaneous coherent excitation of non-interacting atom clusters for the state
$\mathrm{57D_{5/2}}$ and analyze the experimental parameters and limitations.
For configurations optimized for Rydberg blockade utilizing the state
$\mathrm{87D_{5/2}}$, we observe collectively enhanced Rabi oscillations.
Related papers
- Engineering Rydberg-pair interactions in divalent atoms with hyperfine-split ionization thresholds [3.893862886864584]
We infer the Rydberg structure of isotopes with non-zero nuclear spin and perform non-perturbative Rydberg-pair interaction calculations.
Specifically in $87$Sr, we study an intrinsic F"orster resonance, unique to divalent atoms with hyperfine-split thresholds.
We provide parameters for pair states that can be effectively described by single-channel Rydberg series.
arXiv Detail & Related papers (2024-07-31T23:24:58Z) - Simulating a two component Bose-Hubbard model with imbalanced hopping in a Rydberg tweezer array [0.20971479389679332]
We simulate a two-component Bose-Hubbard model with power-law hopping using arrays of multilevel Rydberg atoms.
We show how multilevel Rydberg atoms provide an opportunity to explore the diverse non-equilibrium quench dynamics of the model.
arXiv Detail & Related papers (2023-12-22T17:19:36Z) - Engineering chiral spin interactions with Rydberg atoms [0.0]
We propose to simulate the anisotropic and chiral Dzyaloshinskii-Moriya (DM) interaction with Rydberg atom arrays.
The DM Hamiltonian is engineered in a one-dimensional optical lattice or trap array with effective long-range Rydberg spins.
Our results make plausible the formation of non-trivial topological spin textures with Rydberg atom arrays.
arXiv Detail & Related papers (2023-09-15T22:35:24Z) - Topological edge states in a Rydberg composite [44.99833362998488]
A Rydberg atom interfaced with a structured arrangement of ground-state atoms possesses a direct mapping to a tight-binding Hamiltonian.
We first confirm the existence of topologically-protected edge states in a Rydberg composite by mapping it to the paradigmatic Su-Schrieffer-Heeger dimer model.
Following that, we study more complicated systems with trimer unit cells which can be easily simulated with a Rydberg composite.
arXiv Detail & Related papers (2023-09-06T14:33:38Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - Dissipative preparation and stabilization of many-body quantum states in
a superconducting qutrit array [55.41644538483948]
We present and analyze a protocol for driven-dissipatively preparing and stabilizing a manifold of quantum manybody entangled states.
We perform theoretical modeling of this platform via pulse-level simulations based on physical features of real devices.
Our work shows the capacity of driven-dissipative superconducting cQED systems to host robust and self-corrected quantum manybody states.
arXiv Detail & Related papers (2023-03-21T18:02:47Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Anderson localization of a Rydberg electron [68.8204255655161]
Rydberg atoms inherit their level structure, symmetries, and scaling behavior from the hydrogen atom.
limit is reached by simultaneously increasing the number of ground state atoms and the level of excitation of the Rydberg atom.
arXiv Detail & Related papers (2021-11-19T18:01:24Z) - Realizing distance-selective interactions in a Rydberg-dressed atom
array [0.0]
Measurement-based quantum computing relies on the rapid creation of large-scale entanglement in a register of stable qubits.
Rydberg states are well suited to store quantum information, and entanglement can be created using highly-excited Rydberg states.
Here, we engineer distance-selective interactions that are strongly peaked in distance through off-resonant laser coupling of molecular potentials between Rydberg atom pairs.
arXiv Detail & Related papers (2021-10-19T17:39:48Z) - High-Fidelity Entanglement and Detection of Alkaline-Earth Rydberg Atoms [48.093689931392866]
Controlled two-qubit entanglement generation has so far been limited to alkali species.
We demonstrate a novel approach utilizing the two-valence electron structure of individual alkaline-earth Rydberg atoms.
We find fidelities for Rydberg state detection, single-atom Rabi operations, and two-atom entanglement surpassing previously published values.
arXiv Detail & Related papers (2020-01-13T18:42:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.