Simulating a two component Bose-Hubbard model with imbalanced hopping in a Rydberg tweezer array
- URL: http://arxiv.org/abs/2312.14846v2
- Date: Mon, 6 May 2024 20:51:10 GMT
- Title: Simulating a two component Bose-Hubbard model with imbalanced hopping in a Rydberg tweezer array
- Authors: Y. Zhang, A. Gaddie, H-V. Do, G. W. Biedermann, R. J. Lewis-Swan,
- Abstract summary: We simulate a two-component Bose-Hubbard model with power-law hopping using arrays of multilevel Rydberg atoms.
We show how multilevel Rydberg atoms provide an opportunity to explore the diverse non-equilibrium quench dynamics of the model.
- Score: 0.20971479389679332
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Optical tweezer arrays of neutral atoms provide a versatile platform for quantum simulation due to the range of interactions and Hamiltonians that can be realized and explored. We propose to simulate a two-component Bose-Hubbard model with power-law hopping using arrays of multilevel Rydberg atoms featuring resonant dipolar interactions. The diversity of states that can be used to encode the local Hilbert space of the Bose-Hubbard model enables control of the relative hopping rate of each component and even the realization of spin-flip hopping. We use numerical simulations to show how multilevel Rydberg atoms provide an opportunity to explore the diverse non-equilibrium quench dynamics of the model. For example, we demonstrate a separation of the relaxation timescales of effective spin and charge degrees of freedom, and observe regimes of slow relaxation when the effective hopping rates of the two components are vastly different due to dynamical constraints arising from hardcore boson interactions. We discuss prospects for studying these effects in state-of-the-art Rydberg tweezer arrays.
Related papers
- Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Supersolidity in Rydberg tweezer arrays [0.41232474244672235]
Rydberg tweezer arrays provide a versatile platform to explore quantum magnets with dipolar XY or van-der-Waals Ising ZZ interactions.
We propose a scheme combining dipolar and van-der-Waals interactions between Rydberg atoms, where the amplitude of the latter can be greater than that of the former.
For repulsive interactions, we predict the existence of a robust supersolid phase in current Rydberg tweezer experiments.
arXiv Detail & Related papers (2024-07-17T17:21:30Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Quench dynamics in higher-dimensional Holstein models: Insights from Truncated Wigner Approaches [41.94295877935867]
We study the melting of charge-density waves in a Holstein model after a sudden switch-on of the electronic hopping.
A comparison with exact data obtained for a Holstein chain shows that a semiclassical treatment of both the electrons and phonons is required in order to correctly describe the phononic dynamics.
arXiv Detail & Related papers (2023-12-19T16:14:01Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Manipulating growth and propagation of correlations in dipolar
multilayers: From pair production to bosonic Kitaev models [0.0]
We map the many-body spin dynamics to bosonic models.
In a bilayer configuration we show how to engineer the paradigmatic two-mode squeezing Hamiltonian known from quantum optics.
In multi-layer configurations we engineer a bosonic variant of the Kitaev model displaying chiral propagation along the layer direction.
arXiv Detail & Related papers (2022-11-22T19:00:01Z) - Slow semiclassical dynamics of a two-dimensional Hubbard model in
disorder-free potentials [77.34726150561087]
We show that introduction of harmonic and spin-dependent linear potentials sufficiently validates fTWA for longer times.
In particular, we focus on a finite two-dimensional system and show that at intermediate linear potential strength, the addition of a harmonic potential and spin dependence of the tilt, results in subdiffusive dynamics.
arXiv Detail & Related papers (2022-10-03T16:51:25Z) - Spin-spin coupling-based quantum and classical phase transitions in
two-impurity spin-boson models [55.41644538483948]
Two-interacting-impurity spin-boson models with vanishing transverse fields on the spin-pair are studied.
The dynamics of the magnetization is analysed for different levels of (an)isotropy.
arXiv Detail & Related papers (2022-05-19T08:01:03Z) - Controlling many-body dynamics with driven quantum scars in Rydberg atom
arrays [41.74498230885008]
We experimentally investigate non-equilibrium dynamics following rapid quenches in a many-body system composed of 3 to 200 strongly interacting qubits in one and two spatial dimensions.
We discover that scar revivals can be stabilized by periodic driving, which generates a robust subharmonic response akin to discrete time-crystalline order.
arXiv Detail & Related papers (2020-12-22T19:00:02Z) - Assembled arrays of Rydberg-interacting atoms [0.0]
We demonstrate the first realization of Rydberg excitations and controlled interactions in microlens-generated multisite trap arrays of reconfigurable geometry.
We characterize the simultaneous coherent excitation of non-interacting atom clusters for the state $mathrm57D_5/2$ and analyze the experimental parameters and limitations.
arXiv Detail & Related papers (2020-08-11T17:18:42Z) - Long-range multi-body interactions and three-body anti-blockade in a
trapped Rydberg ion chain [6.431584269935996]
Trapped Rydberg ions represent a flexible platform for quantum simulation and information processing.
We show that the coupling between Rydberg pair interactions and collective motional modes gives rise to effective long-range multi-body interactions.
Our study shows that trapped Rydberg ions offer new opportunities to study exotic many-body quantum dynamics.
arXiv Detail & Related papers (2020-05-12T12:41:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.