Image segmentation via Cellular Automata
- URL: http://arxiv.org/abs/2008.04965v2
- Date: Thu, 13 Aug 2020 00:37:47 GMT
- Title: Image segmentation via Cellular Automata
- Authors: Mark Sandler, Andrey Zhmoginov, Liangcheng Luo, Alexander Mordvintsev,
Ettore Randazzo, Blaise Ag\'uera y Arcas
- Abstract summary: We design and train a cellular automaton that can successfully segment high-resolution images.
Our smallest automaton uses less than 10,000 parameters to solve complex segmentation tasks.
- Score: 58.86475603234583
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a new approach for building cellular automata to
solve real-world segmentation problems. We design and train a cellular
automaton that can successfully segment high-resolution images. We consider a
colony that densely inhabits the pixel grid, and all cells are governed by a
randomized update that uses the current state, the color, and the state of the
$3\times 3$ neighborhood. The space of possible rules is defined by a small
neural network. The update rule is applied repeatedly in parallel to a large
random subset of cells and after convergence is used to produce segmentation
masks that are then back-propagated to learn the optimal update rules using
standard gradient descent methods. We demonstrate that such models can be
learned efficiently with only limited trajectory length and that they show
remarkable ability to organize the information to produce a globally consistent
segmentation result, using only local information exchange. From a practical
perspective, our approach allows us to build very efficient models -- our
smallest automaton uses less than 10,000 parameters to solve complex
segmentation tasks.
Related papers
- Large-Scale Multi-Hypotheses Cell Tracking Using Ultrametric Contours Maps [1.015920567871904]
We describe a method for large-scale 3D cell-tracking through a segmentation selection approach.
We show that this method achieves state-of-the-art results in 3D images from the cell tracking challenge.
Our framework is flexible and supports segmentations from off-the-shelf cell segmentation models.
arXiv Detail & Related papers (2023-08-08T18:41:38Z) - Just One Byte (per gradient): A Note on Low-Bandwidth Decentralized
Language Model Finetuning Using Shared Randomness [86.61582747039053]
Language model training in distributed settings is limited by the communication cost of exchanges.
We extend recent work using shared randomness to perform distributed fine-tuning with low bandwidth.
arXiv Detail & Related papers (2023-06-16T17:59:51Z) - EfficientCellSeg: Efficient Volumetric Cell Segmentation Using Context
Aware Pseudocoloring [4.555723508665994]
We introduce a small convolutional neural network (CNN) for volumetric cell segmentation.
Our model is efficient and has an asymmetric encoder-decoder structure with very few parameters in the decoder.
Our method achieves top-ranking results, while our CNN model has an up to 25x lower number of parameters than other top-ranking methods.
arXiv Detail & Related papers (2022-04-06T18:02:15Z) - Graph Neural Network for Cell Tracking in Microscopy Videos [0.0]
We present a novel graph neural network (GNN) approach for cell tracking in microscopy videos.
By modeling the entire time-lapse sequence as a direct graph, we extract the entire set of cell trajectories.
We exploit a deep metric learning algorithm to extract cell feature vectors that distinguish between instances of different biological cells.
arXiv Detail & Related papers (2022-02-09T21:21:48Z) - Global Aggregation then Local Distribution for Scene Parsing [99.1095068574454]
We show that our approach can be modularized as an end-to-end trainable block and easily plugged into existing semantic segmentation networks.
Our approach allows us to build new state of the art on major semantic segmentation benchmarks including Cityscapes, ADE20K, Pascal Context, Camvid and COCO-stuff.
arXiv Detail & Related papers (2021-07-28T03:46:57Z) - AINet: Association Implantation for Superpixel Segmentation [82.21559299694555]
We propose a novel textbfAssociation textbfImplantation (AI) module to enable the network to explicitly capture the relations between the pixel and its surrounding grids.
Our method could not only achieve state-of-the-art performance but maintain satisfactory inference efficiency.
arXiv Detail & Related papers (2021-01-26T10:40:13Z) - LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [79.20048372891935]
Currently, many state of the art models are based on the Mask R-CNN framework.
We propose LevelSet R-CNN, which combines the best of both worlds by obtaining powerful feature representations.
We demonstrate the effectiveness of our approach on COCO and Cityscapes datasets.
arXiv Detail & Related papers (2020-07-30T17:52:18Z) - Learning to segment clustered amoeboid cells from brightfield microscopy
via multi-task learning with adaptive weight selection [6.836162272841265]
We introduce a novel supervised technique for cell segmentation in a multi-task learning paradigm.
A combination of a multi-task loss, based on the region and cell boundary detection, is employed for an improved prediction efficiency of the network.
We observe an overall Dice score of 0.93 on the validation set, which is an improvement of over 15.9% on a recent unsupervised method, and outperforms the popular supervised U-net algorithm by at least $5.8%$ on average.
arXiv Detail & Related papers (2020-05-19T11:31:53Z) - Neural Subdivision [58.97214948753937]
This paper introduces Neural Subdivision, a novel framework for data-driven coarseto-fine geometry modeling.
We optimize for the same set of network weights across all local mesh patches, thus providing an architecture that is not constrained to a specific input mesh, fixed genus, or category.
We demonstrate that even when trained on a single high-resolution mesh our method generates reasonable subdivisions for novel shapes.
arXiv Detail & Related papers (2020-05-04T20:03:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.