Impurity induced scale-free localization
- URL: http://arxiv.org/abs/2008.05501v1
- Date: Wed, 12 Aug 2020 18:06:24 GMT
- Title: Impurity induced scale-free localization
- Authors: Linhu Li, Ching Hua Lee, Jiangbin Gong
- Abstract summary: This work develops a full framework for non-Hermitian impurity physics in a non-reciprocal lattice.
As the impurity strength is tuned, the localization of steady states can assume very rich behavior.
We propose specific circuit setups for experimental detection of the scale-free accumulation.
- Score: 3.205614282399206
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This work develops a full framework for non-Hermitian impurity physics in a
non-reciprocal lattice, with PBCs, OBCs and even their interpolations being
special cases across a whole range of boundary impurity strengths. As the
impurity strength is tuned, the localization of steady states can assume very
rich behavior, including the expected non-Hermitian skin effect, Bloch-like
states albeit broken translational invariance, and surprisingly, scale-free
accumulation along or even against the direction of non-reciprocity. We further
uncover the possibility of the co-existence of non-Hermitian skin effect and
scale-free localization, where qualitative aspects of the system's spectrum can
be extremely sensitive to impurity strength. We have also proposed specific
circuit setups for experimental detection of the scale-free accumulation, with
simulation results confirming our main findings.
Related papers
- Impurity-induced counter skin-effect and linear modes in non-Hermitian systems [0.0]
Non-reciprocal lattice systems are among the simplest non-Hermitian systems.
In this study, we unveil how the impurity influences the intrinsic non-Hermitian skin effect of the system.
arXiv Detail & Related papers (2024-08-02T13:37:28Z) - Non-chiral non-Bloch invariants and topological phase diagram in non-unitary quantum dynamics without chiral symmetry [26.179241616332387]
We identify the non-Bloch topological phase diagram of a one-dimensional (1D) non-Hermitian system without chiral symmetry.
We find that such topological invariants can distinguish topologically distinct gapped phases.
Our work provides a useful platform to study the interplay among topology, symmetries and the non-Hermiticity.
arXiv Detail & Related papers (2024-07-26T03:29:30Z) - Regulating Model Reliance on Non-Robust Features by Smoothing Input Marginal Density [93.32594873253534]
Trustworthy machine learning requires meticulous regulation of model reliance on non-robust features.
We propose a framework to delineate and regulate such features by attributing model predictions to the input.
arXiv Detail & Related papers (2024-07-05T09:16:56Z) - Topological spin textures in electronic non-Hermitian systems [3.102831652443411]
Non-Hermitian systems have been discussed mostly in the context of open systems and nonequilibrium.
We show that, in the surface state of a topological insulator with spin-dependent relaxation due to magnetic impurities, highly nontrivial topological soliton spin textures appear in momentum space.
These results open a solid-state avenue to exotic spin patterns via spin- and angle-resolved photoemission spectroscopy, but also inspire non-Hermitian dissipation engineering of spins in solids.
arXiv Detail & Related papers (2023-12-02T05:59:30Z) - Experimentally ruling out joint reality based on operational
completeness [20.56996045100972]
We report a device-independent experiment to confirm that the joint reality of two observables on a single two-level system is incompatible with the assumption of operational completeness.
Our results push the fundamental limit to delineate the quantum-classical boundary and pave the way for exploring relevant problems in other scenarios.
arXiv Detail & Related papers (2022-03-10T08:58:28Z) - Entanglement based observables for quantum impurities [0.0]
Quantum impurities exhibit fascinating many-body phenomena when the small interacting impurity changes the physics of a large noninteracting environment.
Here, we harness an entanglement-based observable - the purity of the impurity - as a witness for the formation of strong correlations.
arXiv Detail & Related papers (2022-01-19T08:08:35Z) - Quantum transport and localization in 1d and 2d tight-binding lattices [39.26291658500249]
Particle transport and localization phenomena in condensed-matter systems can be modeled using a tight-binding lattice Hamiltonian.
Here, we experimentally study quantum transport in one-dimensional and two-dimensional tight-binding lattices, emulated by a fully controllable $3 times 3$ array of superconducting qubits.
arXiv Detail & Related papers (2021-07-11T12:36:12Z) - Exact solution of single impurity problem in non-reciprocal lattices:
impurity induced size-dependent non-Hermitian skin effect [1.9888283697653608]
We study the single impurity problem in the Hatano-Nelson model and the Su-Schreieffer-Heeger model.
From our exact solutions for finite-size systems, we unveil that increasing the impurity strength can lead to a transition of the bulk states from non-skin states to skin states.
arXiv Detail & Related papers (2021-06-07T08:37:24Z) - Point-gap topology with complete bulk-boundary correspondence in
dissipative quantum systems [0.0]
The spectral and dynamical properties of dissipative quantum systems are investigated from a topological point of view.
We find anomalous skin modes with exponential amplification even though the quantum system is purely dissipative.
arXiv Detail & Related papers (2020-10-28T10:15:40Z) - Localization Uncertainty Estimation for Anchor-Free Object Detection [48.931731695431374]
There are several limitations of the existing uncertainty estimation methods for anchor-based object detection.
We propose a new localization uncertainty estimation method called UAD for anchor-free object detection.
Our method captures the uncertainty in four directions of box offsets that are homogeneous, so that it can tell which direction is uncertain.
arXiv Detail & Related papers (2020-06-28T13:49:30Z) - Towards a Kernel based Uncertainty Decomposition Framework for Data and
Models [20.348825818435767]
This paper introduces a new framework for quantifying predictive uncertainty for both data and models.
We apply this framework as a surrogate tool for predictive uncertainty quantification of point-prediction neural network models.
arXiv Detail & Related papers (2020-01-30T18:35:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.