論文の概要: Continual Class Incremental Learning for CT Thoracic Segmentation
- arxiv url: http://arxiv.org/abs/2008.05557v1
- Date: Wed, 12 Aug 2020 20:08:39 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-31 05:41:13.281770
- Title: Continual Class Incremental Learning for CT Thoracic Segmentation
- Title(参考訳): CT胸部切開のための連続的授業増分学習
- Authors: Abdelrahman Elskhawy, Aneta Lisowska, Matthias Keicher, Josep Henry,
Paul Thomson, Nassir Navab
- Abstract要約: 深層学習機関のセグメンテーションアプローチは大量の注釈付きトレーニングデータを必要とするが、これは機密性の理由と専門家の手による注釈に必要な時間のために供給が限られている。
以前使用されていたデータにアクセスせずに、段階的にモデルをトレーニングできることが望ましい。
この設定では、モデルは新しいタスクを効果的に学習するが、以前に学習したタスクのパフォーマンスが低下する。
LwF(Learning without Forgetting)アプローチは、モデルトレーニング中に過去のタスクに対する独自の予測を再生することでこの問題に対処する。
従来のセグメンテーションに関する知識をLwFが保持できることを示すが、新しいクラスを学習する能力は減少する。
- 参考スコア(独自算出の注目度): 36.45569352490318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning organ segmentation approaches require large amounts of
annotated training data, which is limited in supply due to reasons of
confidentiality and the time required for expert manual annotation. Therefore,
being able to train models incrementally without having access to previously
used data is desirable. A common form of sequential training is fine tuning
(FT). In this setting, a model learns a new task effectively, but loses
performance on previously learned tasks. The Learning without Forgetting (LwF)
approach addresses this issue via replaying its own prediction for past tasks
during model training. In this work, we evaluate FT and LwF for class
incremental learning in multi-organ segmentation using the publicly available
AAPM dataset. We show that LwF can successfully retain knowledge on previous
segmentations, however, its ability to learn a new class decreases with the
addition of each class. To address this problem we propose an adversarial
continual learning segmentation approach (ACLSeg), which disentangles feature
space into task-specific and task-invariant features. This enables preservation
of performance on past tasks and effective acquisition of new knowledge.
- Abstract(参考訳): ディープラーニングオルガンセグメンテーションアプローチには大量の注釈付きトレーニングデータが必要であり、機密性や専門家の手動アノテーションに要する時間のために供給が制限されている。
したがって、以前に使用したデータにアクセスせずに、段階的にモデルをトレーニングできることが望ましい。
シーケンシャルトレーニングの一般的な形式はファインチューニング(FT)である。
この設定では、モデルは新しいタスクを効果的に学習するが、以前に学習したタスクのパフォーマンスを失う。
LwF(Learning without Forgetting)アプローチは、モデルトレーニング中に過去のタスクに対する独自の予測を再生することでこの問題に対処する。
本研究では, FT と LwF を用いて, AAPM データセットを用いて, 複数組織セグメンテーションにおけるクラスインクリメンタル学習の評価を行った。
従来のセグメンテーションではlwfが知識の保持に成功しているが,各クラスの追加によって新しいクラスを学習する能力は低下する。
この問題に対処するために,タスク固有およびタスク不変の特徴に特徴空間を分散させる対向的連続学習セグメンテーション手法 (ACLSeg) を提案する。
これにより、過去のタスクにおけるパフォーマンスの維持と、新しい知識の効果的な獲得が可能になる。
関連論文リスト
- Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
C-ADA (Continuous Adapter) という,RFCL タスクに対する超高速学習手法を提案する。
C-ADAは、CALの特定の重みを柔軟に拡張し、各タスクの新たな知識を学び、古い重みを凍結して以前の知識を保存する。
提案手法は,現状のSOTA(State-of-the-art)法よりも優れ,性能とトレーニング速度を大幅に向上させる。
論文 参考訳(メタデータ) (2024-07-14T17:40:40Z) - Class incremental learning with probability dampening and cascaded gated classifier [4.285597067389559]
本稿では, Margin Dampening と Cascaded Scaling という新たな漸進正規化手法を提案する。
1つ目は、ソフト制約と知識蒸留のアプローチを組み合わせて、過去の知識を保存し、新しいパターンを忘れることを可能にします。
提案手法は,複数のベンチマークにおいて,確立されたベースラインで良好に動作することを示す。
論文 参考訳(メタデータ) (2024-02-02T09:33:07Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
分散型特徴再現(LP-DiF)を用いた学習プロンプト(Learning Prompt)という,シンプルで効果的なフレームワークを提案する。
新しいセッションでは,学習可能なプロンプトが古い知識を忘れないようにするため,擬似機能的リプレイ手法を提案する。
新しいセッションに進むと、古いクラスのディストリビューションと現在のセッションのトレーニングイメージを組み合わせて擬似フィーチャーをサンプリングして、プロンプトを最適化する。
論文 参考訳(メタデータ) (2024-01-03T07:59:17Z) - Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning
Interference with Gradient Projection [56.292071534857946]
最近のデータプライバシ法は、機械学習への関心を喚起している。
課題は、残りのデータセットに関する知識を変更することなく、忘れたデータに関する情報を捨てることである。
我々は、プロジェクテッド・グラディエント・アンラーニング(PGU)という、プロジェクテッド・グラディエント・ベースの学習手法を採用する。
トレーニングデータセットがもはやアクセスできない場合でも、スクラッチからスクラッチで再トレーニングされたモデルと同じような振る舞いをするモデルを、我々のアンラーニング手法が生成できることを実証するための実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-12-07T07:17:24Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
継続的な学習は、モデルが以前に学習した情報を忘れてしまう破滅的な忘れ込みの課題を克服しようとする。
本稿では,パラメータ成長の制約を緩和し,破滅的な忘れを減らし,新しい事前手法を提案する。
以上の結果から, BAdamは, 単頭クラスインクリメンタル実験に挑戦する先行手法に対して, 最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2023-09-15T17:10:51Z) - Complementary Learning Subnetworks for Parameter-Efficient
Class-Incremental Learning [40.13416912075668]
本稿では,2つの補完学習サブネットワークス間のシナジーを通じて連続的に学習するリハーサルフリーなCILアプローチを提案する。
提案手法は, 精度向上, メモリコスト, トレーニング効率, タスク順序など, 最先端手法と競合する結果が得られる。
論文 参考訳(メタデータ) (2023-06-21T01:43:25Z) - Preventing Catastrophic Forgetting in Continual Learning of New Natural
Language Tasks [17.879087904904935]
マルチタスク学習(MTL)は、自然言語処理において、1つのモデルで複数の関連するタスクを学習するための標準技術として広く受け入れられている。
通常、システムは時間とともに進化するので、既存のMTLモデルに新しいタスクを追加するには、通常、すべてのタスクをスクラッチから再トレーニングする必要があります。
本稿では、n+1タスクを解くための新しいタスクに、既に訓練済みのnタスクに関するモデルの知識を蒸留することにより、MTLモデルの能力を漸進的に拡張し、新しいタスクを時間とともに解決する問題にアプローチする。
論文 参考訳(メタデータ) (2023-02-22T00:18:25Z) - Task-Adaptive Saliency Guidance for Exemplar-free Class Incremental Learning [60.501201259732625]
EFCILにタスク適応型サリエンシを導入し、タスク適応型サリエンシ・スーパービジョン(TASS)と呼ばれる新しいフレームワークを提案する。
提案手法は,CIFAR-100, Tiny-ImageNet, ImageNet-Subset EFCILベンチマークを用いて,タスク間のサリエンシマップの保存や,最先端の成果の達成に有効であることを示す。
論文 参考訳(メタデータ) (2022-12-16T02:43:52Z) - PIVOT: Prompting for Video Continual Learning [50.80141083993668]
PIVOTは、画像領域から事前学習したモデルにおける広範な知識を活用する新しい手法である。
実験の結果,PIVOTは20タスクのアクティビティネット設定において,最先端の手法を27%向上することがわかった。
論文 参考訳(メタデータ) (2022-12-09T13:22:27Z) - Task Residual for Tuning Vision-Language Models [69.22958802711017]
タスク残差調整(TaskRes)と呼ばれる視覚言語モデル(VLM)のための新しい効率的なチューニング手法を提案する。
TaskResは、トレーニング済みモデルの事前知識とターゲットタスクに関する新たな知識を明示的に分離する。
提案されたTaskResは単純だが有効であり、11のベンチマークデータセットで以前のメソッドよりも大幅に上回っている。
論文 参考訳(メタデータ) (2022-11-18T15:09:03Z) - Effects of Auxiliary Knowledge on Continual Learning [16.84113206569365]
連続学習(CL)では、ニューラルネットワークは、時間とともに分布が変化するデータのストリームに基づいて訓練される。
既存のCLアプローチのほとんどは、獲得した知識を保存するソリューションを見つけることに重点を置いている。
モデルが新しいタスクを継続的に学習する必要があるため、タスク学習の後に改善する可能性のある現在の知識に焦点を合わせることも重要である、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-03T14:31:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。