論文の概要: Statistical Evaluation of Anomaly Detectors for Sequences
- arxiv url: http://arxiv.org/abs/2008.05788v1
- Date: Thu, 13 Aug 2020 10:07:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 22:38:07.221021
- Title: Statistical Evaluation of Anomaly Detectors for Sequences
- Title(参考訳): 配列異常検出器の統計的評価
- Authors: Erik Scharw\"achter and Emmanuel M\"uller
- Abstract要約: 逐次データにおける点ベース異常検出の時間的耐性を考慮した精度とリコールの概念を定式化する。
本研究では, 結果の統計的意義を評価するために, 2つの尺度に対してNull分布を求める方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Although precision and recall are standard performance measures for anomaly
detection, their statistical properties in sequential detection settings are
poorly understood. In this work, we formalize a notion of precision and recall
with temporal tolerance for point-based anomaly detection in sequential data.
These measures are based on time-tolerant confusion matrices that may be used
to compute time-tolerant variants of many other standard measures. However,
care has to be taken to preserve interpretability. We perform a statistical
simulation study to demonstrate that precision and recall may overestimate the
performance of a detector, when computed with temporal tolerance. To alleviate
this problem, we show how to obtain null distributions for the two measures to
assess the statistical significance of reported results.
- Abstract(参考訳): 精度とリコールは異常検出の標準的な性能指標であるが, 逐次検出設定における統計的特性はよく理解されていない。
本研究では,逐次データにおける点に基づく異常検出に対する時間的許容度と精度の概念を定式化する。
これらの測度は、他の多くの標準測度の時間耐性変量を計算するために用いられる時間耐性混乱行列に基づいている。
しかし、解釈可能性を維持するには注意が必要である。
我々は,時間的寛容で計算した場合,精度とリコールが検出器の性能を過大評価することを示す統計的シミュレーションを行った。
この問題を緩和するために,報告結果の統計的意義を評価するために,二つの尺度のヌル分布を得る方法を示す。
関連論文リスト
- An Evaluation of Real-time Adaptive Sampling Change Point Detection Algorithm using KCUSUM [4.610597418629838]
本稿では,Kernel-based Cumulative Sum (KCUSUM)アルゴリズムを導入し,従来のCumulative Sum (CUSUM) 法を非パラメトリック拡張する。
KCUSUMは、入ってくるサンプルを参照サンプルと直接比較することで自身を分割し、最大平均離散(MMD)非パラメトリックフレームワークに基礎を置く統計を計算する。
我々は,NWChem CODARやタンパク質折り畳みデータなどの科学シミュレーションによる実世界のユースケースについて論じ,オンライン変化点検出におけるKCUSUMの有効性を実証した。
論文 参考訳(メタデータ) (2024-02-15T19:45:24Z) - Score Matching-based Pseudolikelihood Estimation of Neural Marked
Spatio-Temporal Point Process with Uncertainty Quantification [59.81904428056924]
我々は、不確実な定量化を伴うmarkPsを学習するためのスコアMAtching推定器であるSMASHを紹介する。
具体的には,スコアマッチングによるマークPsの擬似的類似度を推定することにより,正規化自由度を推定する。
提案手法の優れた性能は、事象予測と不確実性定量化の両方において広範な実験によって実証される。
論文 参考訳(メタデータ) (2023-10-25T02:37:51Z) - Adaptive Thresholding Heuristic for KPI Anomaly Detection [1.57731592348751]
時系列領域では、多くの異常検知器が探索されているが、ビジネス的な意味では、すべての異常検出器が興味のある異常であるわけではない。
本稿では,データ分布の局所特性に基づいて検出閾値を動的に調整し,時系列パターンの変化に適応する適応的閾値保持ヒューリスティック(ATH)を提案する。
実験結果から, ATHは効率が良く, ほぼリアルタイムで異常検出が可能であり, 予測器や異常検出器で柔軟であることがわかった。
論文 参考訳(メタデータ) (2023-08-21T06:45:28Z) - SoftED: Metrics for Soft Evaluation of Time Series Event Detection [4.263111781491367]
時系列イベント検出法は,検出精度にのみ焦点をあてた標準分類基準によって評価される。
事象を検出する不正確さは、しばしば、隣り合う検出に反映される先行または遅延効果によって生じる。
本稿では,イベント検出手法のソフトアセスメントのために設計された,新しいメトリクスセットであるSoftEDメトリクスを紹介する。
論文 参考訳(メタデータ) (2023-04-02T03:27:31Z) - The Implicit Delta Method [61.36121543728134]
本稿では,不確実性のトレーニング損失を無限に正規化することで機能する,暗黙のデルタ法を提案する。
有限差分により無限小変化が近似された場合でも, 正則化による評価の変化は評価推定器の分散に一定であることを示す。
論文 参考訳(メタデータ) (2022-11-11T19:34:17Z) - Local Evaluation of Time Series Anomaly Detection Algorithms [9.717823994163277]
本稿では,弱い仮定下でのほとんどすべてのデータセットに対して,逆アルゴリズムが高精度に到達し,リコール可能であることを示す。
本稿では,精度/リコール指標に対する理論的基盤,頑健,パラメータフリー,解釈可能な拡張を提案する。
論文 参考訳(メタデータ) (2022-06-27T10:18:41Z) - TACTiS: Transformer-Attentional Copulas for Time Series [76.71406465526454]
時間変化量の推定は、医療や金融などの分野における意思決定の基本的な構成要素である。
本稿では,アテンションベースデコーダを用いて関節分布を推定する多元的手法を提案する。
本研究では,本モデルが実世界の複数のデータセットに対して最先端の予測を生成することを示す。
論文 参考訳(メタデータ) (2022-02-07T21:37:29Z) - A Statistical Analysis of Summarization Evaluation Metrics using
Resampling Methods [60.04142561088524]
信頼区間は比較的広く,信頼性の高い自動測定値の信頼性に高い不確実性を示す。
多くのメトリクスはROUGEよりも統計的改善を示していないが、QAEvalとBERTScoreという2つの最近の研究は、いくつかの評価設定で行われている。
論文 参考訳(メタデータ) (2021-03-31T18:28:14Z) - Performance metrics for intervention-triggering prediction models do not
reflect an expected reduction in outcomes from using the model [71.9860741092209]
臨床研究者はしばしばリスク予測モデルの中から選択し評価する。
振り返りデータから算出される標準メトリクスは、特定の仮定の下でのみモデルユーティリティに関係します。
予測が時間を通して繰り返し配信される場合、標準メトリクスとユーティリティの関係はさらに複雑になる。
論文 参考訳(メタデータ) (2020-06-02T16:26:49Z) - Learning to Predict Error for MRI Reconstruction [67.76632988696943]
提案手法による予測の不確実性は予測誤差と強く相関しないことを示す。
本稿では,2段階の予測誤差の目標ラベルと大小を推定する新しい手法を提案する。
論文 参考訳(メタデータ) (2020-02-13T15:55:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。