論文の概要: Adaptive Thresholding Heuristic for KPI Anomaly Detection
- arxiv url: http://arxiv.org/abs/2308.10504v1
- Date: Mon, 21 Aug 2023 06:45:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-22 14:49:09.291014
- Title: Adaptive Thresholding Heuristic for KPI Anomaly Detection
- Title(参考訳): KPI異常検出のための適応閾値ヒューリスティック
- Authors: Ebenezer R.H.P. Isaac and Akshat Sharma
- Abstract要約: 時系列領域では、多くの異常検知器が探索されているが、ビジネス的な意味では、すべての異常検出器が興味のある異常であるわけではない。
本稿では,データ分布の局所特性に基づいて検出閾値を動的に調整し,時系列パターンの変化に適応する適応的閾値保持ヒューリスティック(ATH)を提案する。
実験結果から, ATHは効率が良く, ほぼリアルタイムで異常検出が可能であり, 予測器や異常検出器で柔軟であることがわかった。
- 参考スコア(独自算出の注目度): 1.57731592348751
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A plethora of outlier detectors have been explored in the time series domain,
however, in a business sense, not all outliers are anomalies of interest.
Existing anomaly detection solutions are confined to certain outlier detectors
limiting their applicability to broader anomaly detection use cases. Network
KPIs (Key Performance Indicators) tend to exhibit stochastic behaviour
producing statistical outliers, most of which do not adversely affect business
operations. Thus, a heuristic is required to capture the business definition of
an anomaly for time series KPI. This article proposes an Adaptive Thresholding
Heuristic (ATH) to dynamically adjust the detection threshold based on the
local properties of the data distribution and adapt to changes in time series
patterns. The heuristic derives the threshold based on the expected periodicity
and the observed proportion of anomalies minimizing false positives and
addressing concept drift. ATH can be used in conjunction with any underlying
seasonality decomposition method and an outlier detector that yields an outlier
score. This method has been tested on EON1-Cell-U, a labeled KPI anomaly
dataset produced by Ericsson, to validate our hypothesis. Experimental results
show that ATH is computationally efficient making it scalable for near real
time anomaly detection and flexible with multiple forecasters and outlier
detectors.
- Abstract(参考訳): 一連の外れ値検出器が時系列領域で研究されてきたが、ビジネス的な意味では、すべての外れ値が興味のある異常であるとは限らない。
既存の異常検出ソリューションは、より広い異常検出ユースケースに適用性を制限する特定の異常検知器に限られる。
ネットワークkpi(key performance indicators)は統計的外れ値を生成する確率的行動を示す傾向にあり、そのほとんどはビジネスオペレーションに悪影響を与えない。
したがって、時系列KPIの異常のビジネス定義を捉えるにはヒューリスティックが必要である。
本稿では,データ分布の局所特性に基づいて検出閾値を動的に調整し,時系列パターンの変化に適応する適応的閾値保持ヒューリスティック(ATH)を提案する。
ヒューリスティックは、予測周期性と、偽陽性を最小化する異常の観測割合と、対処する概念ドリフトに基づいて閾値を導出する。
ATHは、下層の季節分解法や、外れ値を得る外れ値検出器と併用することができる。
EON1-Cell-Uというラベル付きKPI異常データセットを用いて,我々の仮説を検証する。
実験結果から、ATHは計算効率が良く、ほぼリアルタイムで異常検出が可能であり、複数の予測器と異常検出器で柔軟であることがわかった。
関連論文リスト
- Adaptive Deviation Learning for Visual Anomaly Detection with Data Contamination [20.4008901760593]
そこで本研究では,偏差学習を応用して,異常スコアをエンドツーエンドに計算する手法を提案する。
提案手法は競合する手法を超越し,データ汚染の存在下での安定性とロバスト性を示す。
論文 参考訳(メタデータ) (2024-11-14T16:10:15Z) - Towards Unbiased Evaluation of Time-series Anomaly Detector [6.521243384420707]
時系列異常検出(TSAD)は、その重要な応用に動機付けられた研究の進化する領域である。
本研究では,平衡点調整(BA)と呼ばれる代替調整プロトコルを提案する。
論文 参考訳(メタデータ) (2024-09-19T19:02:45Z) - MSFlow: Multi-Scale Flow-based Framework for Unsupervised Anomaly
Detection [124.52227588930543]
教師なし異常検出(UAD)は多くの研究の関心を集め、幅広い応用を推進している。
不明瞭だが強力な統計モデルである正規化フローは、教師なしの方法で異常検出と局所化に適している。
非対称な並列フローと融合フローからなるMSFlowと呼ばれる新しいマルチスケールフローベースフレームワークを提案する。
我々のMSFlowは、検出AUORCスコアが99.7%、ローカライゼーションAUCROCスコアが98.8%、プロスコアが97.1%の新たな最先端技術を実現している。
論文 参考訳(メタデータ) (2023-08-29T13:38:35Z) - CARLA: Self-supervised Contrastive Representation Learning for Time Series Anomaly Detection [53.83593870825628]
時系列異常検出(TSAD)の主な課題は、多くの実生活シナリオにおいてラベル付きデータの欠如である。
既存の異常検出手法の多くは、教師なしの方法で非ラベル時系列の正常な振る舞いを学習することに焦点を当てている。
本稿では,時系列異常検出のためのエンドツーエンドの自己教師型コントラアスティブ表現学習手法を提案する。
論文 参考訳(メタデータ) (2023-08-18T04:45:56Z) - Anomaly Detection with Score Distribution Discrimination [4.468952886990851]
本稿では,スコア分布の観点から,異常スコア関数の最適化を提案する。
正常試料と異常試料のスコア分布の重なりを最小化するオーバーラップ損失と呼ばれる新しい損失関数を設計する。
論文 参考訳(メタデータ) (2023-06-26T03:32:57Z) - Time-series Anomaly Detection via Contextual Discriminative Contrastive
Learning [0.0]
一級分類法は、異常検出タスクに一般的に使用される。
本稿では,DeepSVDDの損失関数に着想を得た新しい手法を提案する。
我々は,我々のアプローチと,将来有望な自己教師型学習異常検出手法であるNeutral ADによる決定論的コントラスト損失を組み合わせた。
論文 参考訳(メタデータ) (2023-04-16T21:36:19Z) - PULL: Reactive Log Anomaly Detection Based On Iterative PU Learning [58.85063149619348]
本稿では,推定故障時間ウィンドウに基づくリアクティブ異常検出のための反復ログ解析手法PULLを提案する。
我々の評価では、PULLは3つの異なるデータセットで10のベンチマークベースラインを一貫して上回っている。
論文 参考訳(メタデータ) (2023-01-25T16:34:43Z) - Are we certain it's anomalous? [57.729669157989235]
時系列における異常検出は、高度に非線形な時間的相関のため、異常は稀であるため、複雑なタスクである。
本稿では,異常検出(HypAD)におけるハイパボリック不確実性の新しい利用法を提案する。
HypADは自己指導で入力信号を再構築する。
論文 参考訳(メタデータ) (2022-11-16T21:31:39Z) - Little Help Makes a Big Difference: Leveraging Active Learning to
Improve Unsupervised Time Series Anomaly Detection [2.1684857243537334]
予期せぬネットワークインシデントを検出するために,多数の異常検出アルゴリズムがデプロイされている。
教師なし異常検出アルゴリズムは、しばしば過度の誤報に悩まされる。
本稿では,オペレータのフィードバックの導入とメリットをアクティブな学習に活用することを提案する。
論文 参考訳(メタデータ) (2022-01-25T13:54:19Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - TadGAN: Time Series Anomaly Detection Using Generative Adversarial
Networks [73.01104041298031]
TadGANは、GAN(Generative Adversarial Networks)上に構築された教師なしの異常検出手法である。
時系列の時間相関を捉えるために,ジェネレータと批評家のベースモデルとしてLSTMリカレントニューラルネットワークを用いる。
提案手法の性能と一般化性を示すため,いくつかの異常スコアリング手法を検証し,最も適した手法を報告する。
論文 参考訳(メタデータ) (2020-09-16T15:52:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。