論文の概要: DSDNet: Deep Structured self-Driving Network
- arxiv url: http://arxiv.org/abs/2008.06041v1
- Date: Thu, 13 Aug 2020 17:54:06 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-30 23:30:46.225425
- Title: DSDNet: Deep Structured self-Driving Network
- Title(参考訳): DSDNet: 深く構造化された自動運転ネットワーク
- Authors: Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, Raquel
Urtasun
- Abstract要約: 本稿では,1つのニューラルネットワークを用いて物体検出,動き予測,動き計画を行うDeep Structured Self-Driving Network (DSDNet)を提案する。
我々は,アクター間の相互作用を考慮し,社会的に一貫したマルチモーダル未来予測を生成する,深く構造化されたエネルギーベースモデルを開発する。
- 参考スコア(独自算出の注目度): 92.9456652486422
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose the Deep Structured self-Driving Network (DSDNet),
which performs object detection, motion prediction, and motion planning with a
single neural network. Towards this goal, we develop a deep structured energy
based model which considers the interactions between actors and produces
socially consistent multimodal future predictions. Furthermore, DSDNet
explicitly exploits the predicted future distributions of actors to plan a safe
maneuver by using a structured planning cost. Our sample-based formulation
allows us to overcome the difficulty in probabilistic inference of continuous
random variables. Experiments on a number of large-scale self driving datasets
demonstrate that our model significantly outperforms the state-of-the-art.
- Abstract(参考訳): 本稿では,1つのニューラルネットワークを用いて物体検出,動き予測,動き計画を行うDeep Structured Self-Driving Network (DSDNet)を提案する。
この目標に向けて,アクター間の相互作用を考慮し,社会的に一貫したマルチモーダル未来予測を生成する,深く構造化されたエネルギーベースモデルを開発する。
さらに、DSDNetは、将来予測されるアクターの分布を利用して、構造化計画コストを用いて安全な操作を計画する。
サンプルベースの定式化により,連続確率変数の確率的推論の難しさを克服できる。
大規模な自動運転データセットの実験は、我々のモデルが最先端のデータを著しく上回ることを示した。
関連論文リスト
- GDTS: Goal-Guided Diffusion Model with Tree Sampling for Multi-Modal Pedestrian Trajectory Prediction [15.731398013255179]
マルチモーダル軌道予測のための木サンプリングを用いたゴールガイド拡散モデルを提案する。
2段階のツリーサンプリングアルゴリズムが提案され、一般的な特徴を活用して推論時間を短縮し、マルチモーダル予測の精度を向上させる。
実験により,提案フレームワークは,公開データセットにおけるリアルタイム推論速度と同等の最先端性能を達成できることが実証された。
論文 参考訳(メタデータ) (2023-11-25T03:55:06Z) - Pixel State Value Network for Combined Prediction and Planning in
Interactive Environments [9.117828575880303]
本研究は,予測と計画を組み合わせた深層学習手法を提案する。
U-Netアーキテクチャを持つ条件付きGANは、2つの高解像度画像シーケンスを予測するために訓練される。
結果は、対立する目的の中で車線の変化のような複雑な状況において直感的な行動を示す。
論文 参考訳(メタデータ) (2023-10-11T17:57:13Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Deep Interactive Motion Prediction and Planning: Playing Games with
Motion Prediction Models [162.21629604674388]
本研究は,新しい対話型マルチエージェントニューラルネットワークポリシを予測モデルの一部として使用するゲーム理論モデル予測制御器(MPC)を提案する。
本手法の成功の基礎は,周辺エージェントの状態と地図情報に基づいて車両を操縦できる,新しいマルチエージェントポリシーネットワークの設計である。
論文 参考訳(メタデータ) (2022-04-05T17:58:18Z) - Context-Aware Scene Prediction Network (CASPNet) [3.390468002706074]
我々は,新しい畳み込みニューラルネットワーク(CNN)とリカレントニューラルネットワーク(RNN)に基づくアーキテクチャを用いて,すべての道路利用者の動きを共同で学習し,予測する。
我々の手法は予測ベンチマークで最先端の結果に到達する。
論文 参考訳(メタデータ) (2022-01-18T12:52:01Z) - Network Embedding via Deep Prediction Model [25.727377978617465]
本稿では,深層予測モデルを用いて構造化ネットワーク上での転送挙動を捕捉するネットワーク埋め込みフレームワークを提案する。
ネットワーク構造埋め込み層は、Long Short-Term Memory NetworkやRecurrent Neural Networkなど、従来の深部予測モデルに付加される。
ソーシャルネットワーク, 引用ネットワーク, バイオメディカルネットワーク, 協調ネットワーク, 言語ネットワークなど, さまざまなデータセットについて実験を行った。
論文 参考訳(メタデータ) (2021-04-27T16:56:00Z) - SLPC: a VRNN-based approach for stochastic lidar prediction and
completion in autonomous driving [63.87272273293804]
VRNN(Variiational Recurrent Neural Networks)と呼ばれる生成モデルに基づく新しいLiDAR予測フレームワークを提案する。
提案手法は,フレーム内の奥行きマップを空間的に塗り替えることで,スパースデータを扱う際の従来のビデオ予測フレームワークの限界に対処できる。
VRNNのスパースバージョンとラベルを必要としない効果的な自己監督型トレーニング方法を紹介します。
論文 参考訳(メタデータ) (2021-02-19T11:56:44Z) - Perceive, Predict, and Plan: Safe Motion Planning Through Interpretable
Semantic Representations [81.05412704590707]
本稿では,自動運転車の協調認識,予測,動作計画を行うエンド・ツー・エンドの学習可能なネットワークを提案する。
私たちのネットワークは、人間のデモからエンドツーエンドに学習されます。
論文 参考訳(メタデータ) (2020-08-13T14:40:46Z) - TPNet: Trajectory Proposal Network for Motion Prediction [81.28716372763128]
Trajectory Proposal Network (TPNet) は、新しい2段階の動作予測フレームワークである。
TPNetはまず、仮説の提案として将来の軌道の候補セットを生成し、次に提案の分類と修正によって最終的な予測を行う。
4つの大規模軌道予測データセットの実験は、TPNetが定量的かつ定性的に、最先端の結果を達成することを示した。
論文 参考訳(メタデータ) (2020-04-26T00:01:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。