Unsupervised Image Restoration Using Partially Linear Denoisers
- URL: http://arxiv.org/abs/2008.06164v2
- Date: Tue, 30 Mar 2021 13:56:06 GMT
- Title: Unsupervised Image Restoration Using Partially Linear Denoisers
- Authors: Rihuan Ke and Carola-Bibiane Sch\"onlieb
- Abstract summary: We propose a class of structured denoisers that can be decomposed as the sum of a nonlinear image-dependent mapping, a linear noise-dependent term and a small residual term.
We show that these denoisers can be trained with only noisy images under the condition that the noise has zero mean and known variance.
Our method outperforms some recent unsupervised and self-supervised deep denoising models that do not require clean images for their training.
- Score: 2.3061446605472558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep neural network based methods are the state of the art in various image
restoration problems. Standard supervised learning frameworks require a set of
noisy measurement and clean image pairs for which a distance between the output
of the restoration model and the ground truth, clean images is minimized. The
ground truth images, however, are often unavailable or very expensive to
acquire in real-world applications. We circumvent this problem by proposing a
class of structured denoisers that can be decomposed as the sum of a nonlinear
image-dependent mapping, a linear noise-dependent term and a small residual
term. We show that these denoisers can be trained with only noisy images under
the condition that the noise has zero mean and known variance. The exact
distribution of the noise, however, is not assumed to be known. We show the
superiority of our approach for image denoising, and demonstrate its extension
to solving other restoration problems such as blind deblurring where the ground
truth is not available. Our method outperforms some recent unsupervised and
self-supervised deep denoising models that do not require clean images for
their training. For blind deblurring problems, the method, using only one noisy
and blurry observation per image, reaches a quality not far away from its fully
supervised counterparts on a benchmark dataset.
Related papers
- Low-Trace Adaptation of Zero-shot Self-supervised Blind Image Denoising [23.758547513866766]
We propose a trace-constraint loss function and low-trace adaptation Noise2Noise (LoTA-N2N) model to bridge the gap between self-supervised and supervised learning.
Our method achieves state-of-the-art performance within the realm of zero-shot self-supervised image denoising approaches.
arXiv Detail & Related papers (2024-03-19T02:47:33Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Deep Variation Prior: Joint Image Denoising and Noise Variance
Estimation without Clean Data [2.3061446605472558]
This paper investigates the tasks of image denoising and noise variance estimation in a single, joint learning framework.
We build upon DVP, an unsupervised deep learning framework, that simultaneously learns a denoiser and estimates noise variances.
Our method does not require any clean training images or an external step of noise estimation, and instead, approximates the minimum mean squared error denoisers using only a set of noisy images.
arXiv Detail & Related papers (2022-09-19T17:29:32Z) - Learning to Generate Realistic Noisy Images via Pixel-level Noise-aware
Adversarial Training [50.018580462619425]
We propose a novel framework, namely Pixel-level Noise-aware Generative Adrial Network (PNGAN)
PNGAN employs a pre-trained real denoiser to map the fake and real noisy images into a nearly noise-free solution space.
For better noise fitting, we present an efficient architecture Simple Multi-versa-scale Network (SMNet) as the generator.
arXiv Detail & Related papers (2022-04-06T14:09:02Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Neighbor2Neighbor: Self-Supervised Denoising from Single Noisy Images [98.82804259905478]
We present Neighbor2Neighbor to train an effective image denoising model with only noisy images.
In detail, input and target used to train a network are images sub-sampled from the same noisy image.
A denoising network is trained on sub-sampled training pairs generated in the first stage, with a proposed regularizer as additional loss for better performance.
arXiv Detail & Related papers (2021-01-08T02:03:25Z) - Noise2Kernel: Adaptive Self-Supervised Blind Denoising using a Dilated
Convolutional Kernel Architecture [3.796436257221662]
We propose a dilated convolutional network that satisfies an invariant property, allowing efficient kernel-based training without random masking.
We also propose an adaptive self-supervision loss to circumvent the requirement of zero-mean constraint, which is specifically effective in removing salt-and-pepper or hybrid noise.
arXiv Detail & Related papers (2020-12-07T12:13:17Z) - Unpaired Learning of Deep Image Denoising [80.34135728841382]
This paper presents a two-stage scheme by incorporating self-supervised learning and knowledge distillation.
For self-supervised learning, we suggest a dilated blind-spot network (D-BSN) to learn denoising solely from real noisy images.
Experiments show that our unpaired learning method performs favorably on both synthetic noisy images and real-world noisy photographs.
arXiv Detail & Related papers (2020-08-31T16:22:40Z) - Dual Adversarial Network: Toward Real-world Noise Removal and Noise
Generation [52.75909685172843]
Real-world image noise removal is a long-standing yet very challenging task in computer vision.
We propose a novel unified framework to deal with the noise removal and noise generation tasks.
Our method learns the joint distribution of the clean-noisy image pairs.
arXiv Detail & Related papers (2020-07-12T09:16:06Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.