Low-Trace Adaptation of Zero-shot Self-supervised Blind Image Denoising
- URL: http://arxiv.org/abs/2403.12382v1
- Date: Tue, 19 Mar 2024 02:47:33 GMT
- Title: Low-Trace Adaptation of Zero-shot Self-supervised Blind Image Denoising
- Authors: Jintong Hu, Bin Xia, Bingchen Li, Wenming Yang,
- Abstract summary: We propose a trace-constraint loss function and low-trace adaptation Noise2Noise (LoTA-N2N) model to bridge the gap between self-supervised and supervised learning.
Our method achieves state-of-the-art performance within the realm of zero-shot self-supervised image denoising approaches.
- Score: 23.758547513866766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning-based denoiser has been the focus of recent development on image denoising. In the past few years, there has been increasing interest in developing self-supervised denoising networks that only require noisy images, without the need for clean ground truth for training. However, a performance gap remains between current self-supervised methods and their supervised counterparts. Additionally, these methods commonly depend on assumptions about noise characteristics, thereby constraining their applicability in real-world scenarios. Inspired by the properties of the Frobenius norm expansion, we discover that incorporating a trace term reduces the optimization goal disparity between self-supervised and supervised methods, thereby enhancing the performance of self-supervised learning. To exploit this insight, we propose a trace-constraint loss function and design the low-trace adaptation Noise2Noise (LoTA-N2N) model that bridges the gap between self-supervised and supervised learning. Furthermore, we have discovered that several existing self-supervised denoising frameworks naturally fall within the proposed trace-constraint loss as subcases. Extensive experiments conducted on natural and confocal image datasets indicate that our method achieves state-of-the-art performance within the realm of zero-shot self-supervised image denoising approaches, without relying on any assumptions regarding the noise.
Related papers
- Self2Self+: Single-Image Denoising with Self-Supervised Learning and
Image Quality Assessment Loss [4.035753155957699]
The proposed method achieves state-of-the-art denoising performance on both synthetic and real-world datasets.
This highlights the effectiveness and practicality of our method as a potential solution for various noise removal tasks.
arXiv Detail & Related papers (2023-07-20T08:38:01Z) - Advancing Unsupervised Low-light Image Enhancement: Noise Estimation, Illumination Interpolation, and Self-Regulation [55.07472635587852]
Low-Light Image Enhancement (LLIE) techniques have made notable advancements in preserving image details and enhancing contrast.
These approaches encounter persistent challenges in efficiently mitigating dynamic noise and accommodating diverse low-light scenarios.
We first propose a method for estimating the noise level in low light images in a quick and accurate way.
We then devise a Learnable Illumination Interpolator (LII) to satisfy general constraints between illumination and input.
arXiv Detail & Related papers (2023-05-17T13:56:48Z) - Exploring Efficient Asymmetric Blind-Spots for Self-Supervised Denoising in Real-World Scenarios [44.31657750561106]
Noise in real-world scenarios is often spatially correlated, which causes many self-supervised algorithms to perform poorly.
We propose Asymmetric Tunable Blind-Spot Network (AT-BSN), where the blind-spot size can be freely adjusted.
We show that our method achieves state-of-the-art, and is superior to other self-supervised algorithms in terms of computational overhead and visual effects.
arXiv Detail & Related papers (2023-03-29T15:19:01Z) - Enhancing convolutional neural network generalizability via low-rank weight approximation [6.763245393373041]
Sufficient denoising is often an important first step for image processing.
Deep neural networks (DNNs) have been widely used for image denoising.
We introduce a new self-supervised framework for image denoising based on the Tucker low-rank tensor approximation.
arXiv Detail & Related papers (2022-09-26T14:11:05Z) - Zero-shot Blind Image Denoising via Implicit Neural Representations [77.79032012459243]
We propose an alternative denoising strategy that leverages the architectural inductive bias of implicit neural representations (INRs)
We show that our method outperforms existing zero-shot denoising methods under an extensive set of low-noise or real-noise scenarios.
arXiv Detail & Related papers (2022-04-05T12:46:36Z) - IDR: Self-Supervised Image Denoising via Iterative Data Refinement [66.5510583957863]
We present a practical unsupervised image denoising method to achieve state-of-the-art denoising performance.
Our method only requires single noisy images and a noise model, which is easily accessible in practical raw image denoising.
To evaluate raw image denoising performance in real-world applications, we build a high-quality raw image dataset SenseNoise-500 that contains 500 real-life scenes.
arXiv Detail & Related papers (2021-11-29T07:22:53Z) - Noise2Same: Optimizing A Self-Supervised Bound for Image Denoising [54.730707387866076]
We introduce Noise2Same, a novel self-supervised denoising framework.
In particular, Noise2Same requires neither J-invariance nor extra information about the noise model.
Our results show that our Noise2Same remarkably outperforms previous self-supervised denoising methods.
arXiv Detail & Related papers (2020-10-22T18:12:26Z) - Improving Blind Spot Denoising for Microscopy [73.94017852757413]
We present a novel way to improve the quality of self-supervised denoising.
We assume the clean image to be the result of a convolution with a point spread function (PSF) and explicitly include this operation at the end of our neural network.
arXiv Detail & Related papers (2020-08-19T13:06:24Z) - Unsupervised Image Restoration Using Partially Linear Denoisers [2.3061446605472558]
We propose a class of structured denoisers that can be decomposed as the sum of a nonlinear image-dependent mapping, a linear noise-dependent term and a small residual term.
We show that these denoisers can be trained with only noisy images under the condition that the noise has zero mean and known variance.
Our method outperforms some recent unsupervised and self-supervised deep denoising models that do not require clean images for their training.
arXiv Detail & Related papers (2020-08-14T02:13:19Z) - Variational Denoising Network: Toward Blind Noise Modeling and Removal [59.36166491196973]
Blind image denoising is an important yet very challenging problem in computer vision.
We propose a new variational inference method, which integrates both noise estimation and image denoising.
arXiv Detail & Related papers (2019-08-29T15:54:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.